Spectral Clustering Part 3: The Normalized Laplacian

Ng Yen Kaow

More constraint for balance

\square Further constraints can be added to the eigenvalue system
\square The solution to these problems will require the generalized eigensystem $L x=\lambda D x$

Generalized eigensystem $L x=\lambda D x$

- Proposed as a solution to the problem of representing hypergraphs in Euclidean space (Fukunaga et al., 1984)

An edge in a hypergraph can be connected to multiple vertices

Find a representation where the vertices connected by edges with large weights are brought closer to each other

Generalized eigensystem $L x=\lambda D x$

\square The problem is shown to be equivalent to that of solving $L x=\lambda D x$ (Van Driessche and Roose, 1995) which corresponds to the optimization problem

- Minimize $x^{\top} L x$
subject to $x^{\top} D x=1$
Proof.
The Lagrangian \mathcal{L} for the optimization problem is

$$
\mathcal{L}(x, \lambda)=x^{\top} L x+\lambda\left(x^{\top} D x-1\right)
$$

Equating the derivative of \mathcal{L} to zero,

$$
\frac{\partial \mathcal{L}}{\partial x}=2 L x-2 \lambda D x=0 \Rightarrow L x=\lambda D x
$$

Generalized eigensystem $L x=\lambda D x$

- The problem is shown to be equivalent to that of solving $L x=\lambda D x$ (Van Driessche and Roose, 1995) which is from the optimization problem
- Minimize $x^{\top} L x$
subject to $x^{\top} D x=1$
- In this case, let $y=D^{1 / 2} x$ (i.e. $x=D^{-1 / 2} y$) Then $x^{\top} L x \Rightarrow y^{\top} D^{-1 / 2} L D^{-1 / 2} y$, and

$$
x^{\top} D x=1 \Rightarrow y^{\top} y=1
$$

\Rightarrow Minimize $y D^{-1 / 2} L D^{-1 / 2} y$
subject to $y^{\top} y=1$
which is a standard eigendecomposition problem of the matrix $D^{-1 / 2} L D^{-1 / 2}$

Normalized Laplacian $D^{-1 / 2} L D^{-1 / 2}$

- The matrix $D^{-1 / 2} L D^{-1 / 2}$ is now known as the normalized Laplacian
\square It is shown to be positive semi-definite (Van Driessche and Roose, 1995)
\Rightarrow Eigenvalues are all positive (does not matter for spectral clustering but still nice to have)
\square However, $D^{-1 / 2} L D^{-1 / 2}$ have deviated very far from the incidence matrix

Normalized Cut Problem

- Given weight matrix $W=\left(w_{i j}\right)$ and weighted degree matrix $D=\left(d_{i}\right)$
\square Recall that a minimum ratio cut minimizes
$\operatorname{ratio}(S, \bar{S})=\operatorname{cut}(S, \bar{S})\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)$
where $\operatorname{cut}(S, \bar{S})=\sum_{i \in S, j \in \bar{S}} w_{i j}$
- Minimizes difference between the number of vertices

\square A normalized cut attempts to minimize the difference between the sum of the edge weights adjacent to each vertex

Normalized Cut Problem

- Given weight matrix $W=\left(w_{i j}\right)$ and weighted degree matrix $D=\left(d_{i}\right)$, the normalized cut of an undirected graph $G=$ (V, E) is a partition of V into two groups S and \bar{S} such that

$$
\operatorname{ncut}(S, \bar{S})=\operatorname{cut}(S, \bar{S})\left(\frac{1}{\operatorname{vol}(S)}+\frac{1}{\operatorname{vol}(\bar{S})}\right)
$$

is minimized, where $\operatorname{vol}(S)=\sum_{i \in S} d_{i}$, that is, sum of all the weights of the edges adjacent to vertices in S, and $\operatorname{cut}(S, \bar{S})=\sum_{i \in S, j \in \bar{S}} w_{i j}$
© 2021. Ng Yen Kaow N Note: $\operatorname{vol}(S)+\operatorname{vol}(\bar{S})=2 \sum w_{i j}$

Mathematical property

\square Represent a partition S, \bar{S} of V with $x \in \mathbb{R}^{n}$, where

$$
x_{i}=\left\{\begin{array}{cc}
\frac{1}{\operatorname{vol}(S)} & \text { if } i \in S \\
-\frac{1}{\operatorname{vol}(\bar{S})} & \text { if } i \in \bar{S}
\end{array}\right.
$$

As in Ratio Cut, $\left|x_{i}\right|$ changes according to the solution

1. $x^{\top} L x=\sum_{i j} w_{i j}\left(x_{i}-x_{j}\right)^{2}=\left(\frac{1}{\operatorname{vol}(S)}+\frac{1}{\operatorname{vol}(\bar{S})}\right)^{2} \sum_{i j} w_{i j}$ $=\left(\frac{1}{\operatorname{vol}(S)}+\frac{1}{\operatorname{vol}(\bar{S})}\right)^{2} \operatorname{cut}(S, \bar{S})$
2. $x^{\top} D x=\sum_{i} d_{i}\left(x_{i}\right)^{2}=\sum_{i \in S} \frac{d_{i}}{\operatorname{vol}(S)^{2}}+\sum_{i \in \bar{S}} \frac{d_{i}}{\operatorname{vol}(\bar{S})^{2}}=\frac{1}{\operatorname{vol}(S)}+\frac{1}{\operatorname{vol}(\bar{S})}$

$$
1+2 \Rightarrow \frac{x^{\top} L x}{x^{\top} D x}=\operatorname{cut}(S, \bar{S})\left(\frac{1}{\operatorname{vol}(S)}+\frac{1}{\operatorname{vol}(\bar{S})}\right)=\operatorname{ncut}(S, \bar{S})
$$

Constrained optimization problem

- Minimize $x^{\top} L x$ where $L=D-W$
subject to $x_{i} \in\left\{\frac{1}{\operatorname{vol}(S)},-\frac{1}{\operatorname{vol}(\bar{S})}\right\}$,

$$
\begin{aligned}
& x^{\top} D x=1, \text { and } \\
& \mathbf{1}^{\top} D x=0
\end{aligned}
$$

\square Problem is NP-hard

- Note:
- $\mathbf{1}^{\top} D x=\sum_{i \in S} \frac{d_{i}}{\operatorname{vol}(S)}-\sum_{i \in \bar{S}} \frac{d_{i}}{\operatorname{vol}(\bar{S})}=1-1=0$
- $\frac{1}{\operatorname{vol}(S)},-\frac{1}{\operatorname{vol}(\bar{S})}$ are not the only possible choices
- See https://arxiv.org/abs/1311.2492

Relaxed Rayleigh quotient version

\square Minimize $x^{\top} L x$ where $L=D-W$
subject to $x^{\top} D x=1$ and $1^{\top} D x=0$
\square This is equivalent to the earlier generalized eigensystem $L x=\lambda D x$ except for the additional requirement of $1^{\top} D x=0$

Generalized eigensystem

\square Minimize $x^{\top} L x$ where $L=D-W$
subject to $x^{\top} D x=1$ and $1^{\top} D x=0$
\square Let $y=D^{1 / 2} x$, that is, $x=D^{-1 / 2} y$

$$
\begin{gathered}
x^{\top} L x \Rightarrow y^{\top} D^{-1 / 2} L D^{-1 / 2} y \\
x^{\top} D x=1 \Rightarrow y^{\top} y=1 \\
\mathbf{1}^{\top} D x=0 \Rightarrow \mathbb{1}^{\top} D^{1 / 2} y=0
\end{gathered}
$$

Hence equivalently
\square Minimize $y D^{-1 / 2} L D^{-1 / 2} y$
subject to $y^{\top} y=1$ and $\mathbb{1}^{\top} D^{1 / 2} y=0$

Generalized eigensystem

\square Minimize $y D^{-1 / 2} L D^{-1 / 2} y$ where $L=D-W$ subject to $y^{\top} y=1$ and $1^{\top} D^{1 / 2} y=0$
\square All eigenvectors of $D^{-1 / 2} L D^{-1 / 2}$ fulfill $\mathbb{1}^{\top} D^{1 / 2} y=0$

- As 1 is a eigenvector for $L x=\lambda D x$ with eigenvalue $0, D^{1 / 2} 1$ is a eigenvector for this system with eigenvalue 0 (smallest)
- Since eigenvectors of this system are orthogonal, $\left(D^{1 / 2} \mathbf{1}\right) \mu_{k-1}=0$
$\Rightarrow \mathbb{1}^{\top} D^{1 / 2} y=0$ fulfilled
In fact the eigenvalues for this system are the same as those for $L x=\lambda D x$, even though the eigenvectors are different (related by $y=M^{1 / 2} x$)
\Rightarrow Eigendecomposition of $D^{-1 / 2} L D^{-1 / 2}$ suffices

Exercise

\square Find normalized Laplacian $D^{-1 / 2} L D^{-1 / 2}$ for graph and eigendecompose it

To find $D^{-1 / 2}$ in Python, use SciPy sci py. I inal g. sqrtmisci py. I inal g. inv(D))

Eigendecomposition

\square Eigenvalues and eigenvectors

λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}
1.6760	1.5100	1.42700	1.3100	0.9900	0.5880	0.4990	0.0

μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	μ_{6}	μ_{7}	μ_{8}	distribution of the normalized
0.3485	0.0034	0.6240	-0.2451	-0.0704	-0.5023	0.1342	0.3922	
-0.0304	0.6546	-0.3393	-0.2014	0.0768	0.0885	0.4973	0.3922	
0.4129	-0.3896	-0.1906	-0.0484	-0.5545	0.4474	0.1265	0.3397	
-0.2148	-0.2574	-0.4363	-0.5537	0.0989	-0.2859	-0.4286	0.3397	
-0.4292	0.2801	0.1122	0.4236	-0.5021	-0.0836	-0.3638	0.3	
0.5058	0.1486	-0.0793	0.3598	0.4989	0.1541	-0.4454	0.3397	
-0.1662	-0.4557	-0.2360	0.5096	0.2180	-0.3552	0.4457	0.2774	incidence matrix
0.4397	-0.2128	0.4406	-0.1475	0.3513	0.5487	0.0744	0.3397	

© 2021. Ng Yen Kaow

Shi and Malik $(1997,2000)$

\square Proposed the NP-hard ncut problem
\square Related ncut to generalized eigenvalue system, resulting in the now ubiquitous normalized Laplacian

- Use Gaussian function $e^{-d^{2} / 2 \sigma^{2}}$ for weights
- Previously used for min-cut (Wu and Leahy, 1993)
- Used for RatioCut later (Wang and Siskin, 2003)
\square Clustering with multiple eigenvectors (Van Driessche and Roose, 1995; Shi and Malik, 2000)

Clustering w/ multiple eigenvegtors \square With normalized Laplacian

Clustering w/ multiple ei with graph partitioning Laplacian*

μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}			μ_{8}
0.5677	-0.1583	-0.4862	0.3536	0.2315	5	0.1766	0.3536
-0.4281	0.6222	-0.2059	0.3536	0.0622	0.2469	0.2690	!0.3536
0.3517	0.1203	0.2984	-0.3536	0.5170	0.5007	-0.0694	!0.3536
-0.0855	0.0612	0.6267	0.3536	0.1159	-0.4899	-0.3044	0.3536
-0.5514	-0.3549	-0.3566	-0.3536	0.3216	-0.1795	-0.2392	${ }^{1} 0.3536$
0.2351	0.3822	-0.2014	-0.3536	-0.5589	-0.1183	-0.4263	${ }_{1}^{1} 0.3536$
-0.0354	-0.1476	0.2596	-0.3536	-0.279	-0.2029	0.7349	${ }^{1} 0.3536$
-0.0540	-0.5251	0.0654	0.3536	-0.4096,	0.5286	-0.141	'0.3536

The resultant eigenvectors are less suitable for clustering
*see Appendix
© 2021. Ng Yen Kaow

Single/multiple eigenvectors use

- Historical use based on Fiedler vector
- Sign cut or zero threshold cut
- Median cut (ensures balance)
- Sweep/criterion cut
- Sort vertices by Fiedler vector values and cut at the lowest value of some cost function
- Jump/gap cut
- Sort vertices by Fiedler vector values and cut at the point of largest gap
- After Shi and Malik, multiple eigenvectors
- Simultaneous k-way (Shi and Malik, 2000)
- k-means (Ng, Jordan and Weiss, 2001)

Theoretical justification

\square How should we view the normalized Laplacian

- Since normalized Laplacian cannot be related to the incidence matrix, it requires a new characterization
\Rightarrow Random walk characterization (Meilă and Shi, 2000)
\square Arguments based on minimizing divergence and objective functions justify only the use of only one eigenvector (not multiple eigenvectors)
- Furthermore, both arguments are no longer valid for the normalized Laplacian
\Rightarrow (Weiss, 1999; Meilă and Shi, 2000; Ng, Jordan and Weiss, 2001) successively give justification for the use of the eigenvectors

Random walk characterization

\square Let $P=D^{-1} W$ (where $L=D-W$)

- A solution x for $P x=\lambda x$ is a solution for the generalized eigensystem $L x=\lambda D x$ (with eigenvalues $1-\lambda$), and vice versa
Proof.

$$
\begin{aligned}
L x=\lambda D x \Rightarrow D^{-1}(D-W) x & =D^{-1} \lambda D x \\
(I-P) x & =\lambda x \\
P x & =(I-\lambda) x \\
L x & =\lambda D x \\
P x=(I-\lambda) x \Rightarrow D^{-1} W x & =(I-\lambda) x \\
\left(I-D^{-1} W\right) x & =\lambda x \\
(D-W) x & =D \lambda x \\
L x= & D \lambda x
\end{aligned}
$$

Random walk characterization

\square Let $P=D^{-1} W$ (where $L=D-W$)

- A solution x for $P x=\lambda x$ is a solution for the generalized eigensystem $L x=\lambda D x$ (with eigenvalues $1-\lambda$), and vice versa
\square The normalized Laplacian $D^{-1 / 2} L D^{-1 / 2}$ computes the solutions to $P x=\lambda x$ for the normalized matrix P
- However, P is not symmetric
- Doesn't decompose to orthogonal eigenbasis
- On the other hand $D^{-1 / 2} L D^{-1 / 2}$ is symmetric \square Chosen over P for spectral clustering

Random walk characterization

\square Each row in P sums to 1 (normalized)

- P is a Markovian transition matrix
\square To start a walk from v_{1}, let $x=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots\end{array}\right]$, then $P^{l} x$ is the probability distribution after l steps from v_{1}
- x_{i} for neighboring vertices will become more similar \Rightarrow gradients decrease
\square Parts of the graph will even out more quickly

Random walk characterization

\square Example: Let P be a 3×3 matrix

$$
P x=\left(\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right)\left(\begin{array}{l}
f\left(v_{1}\right) \\
f\left(v_{2}\right) \\
f\left(v_{3}\right)
\end{array}\right)=\left(\begin{array}{l}
p_{11} f\left(v_{1}\right)+p_{12} f\left(v_{2}\right)+p_{13} f\left(v_{3}\right) \\
p_{21} f\left(v_{1}\right)+p_{22} f\left(v_{2}\right)+p_{23} f\left(v_{3}\right) \\
p_{31} f\left(v_{1}\right)+p_{32} f\left(v_{2}\right)+p_{33} f\left(v_{3}\right)
\end{array}\right)
$$

- x_{i} for neighboring vertices will become more similar \Rightarrow gradients decrease
\square Parts of the graph will even out more quickly

Random walk characterization

\square A limiting/stable/stationary state for a random walk P is a distribution x^{*} where $P x^{*}=x^{*}$

- By definition x^{*} is a eigenvector of P with $\lambda=1$

Furthermore, x^{*} is everywhere constant if P is

- A transition matrix for a regular graph

By symmetry of the graph, a random walk from any vertex is equally likely to be at any other vertex in the limit

- A Laplacian $L=M M^{\top}$ for incidence matrix M

First note that x^{*} minimizes $x^{\top} L x$. On the other hand we know that $x^{\top} L x=\sum_{v} f(v) \Delta f(v)$. Since $\Delta f(v)=0$ for the everywhere constant x^{\prime}, we have $x^{\prime \top} L x^{\prime}=0$, its minimum. Hence $x^{*}=x^{\prime}$

Why use multiple eigenvectors

\square For illustrative convenience use (an adjacency matrix) $L^{\prime}=D^{-1 / 2}(W) D^{-1 / 2}$ instead of the normalized Laplacian L

- $L^{\prime}=I-L(L=$ normalized Laplacian $)$

Proof. $L=D^{-1 / 2}(D-W) D^{-1 / 2}$

$$
=D^{-1 / 2}(D) D^{-1 / 2}-D^{-1 / 2}(W) D^{-1 / 2}
$$

$$
=I-D^{-1 / 2}(W) D^{-1 / 2}=I-L^{\prime}
$$

- Results in the same eigenvectors but eigenvalues become $1-\lambda_{1}, \ldots, 1-\lambda_{k}$
- Since eigenvalues of L has range in $[0,2]$, eigenvalues of L^{\prime} has range in $[-1,1]$

Why use multiple eigenvectors

Matrix	Eigenvalues/vectors (decreasing order)
L_{u}^{\prime}	$\begin{array}{cl} \lambda_{1}^{u}=1 & v_{1}^{u}=\left[\begin{array}{lll} .5 & .7 & .5 \end{array}\right] \\ \lambda_{2}^{u}=0 & v_{2}^{u}=\left[\begin{array}{lll} .7 & 0 & -.7 \end{array}\right] \\ \lambda_{3}^{u}=-1 & v_{3}^{u}=\left[\begin{array}{lll} .5 & -.7 & .5 \end{array}\right] \end{array}$
L_{l}^{\prime}	$\lambda_{1}^{l}=1$ $v_{1}^{l}=\left[\begin{array}{lll}.6 & .6 & .6\end{array}\right]$ $\lambda_{2}^{l}=-.5$ $v_{2}^{l}=\left[\begin{array}{lll}0 & -.7 & -.7\end{array}\right]$ $\lambda_{3}^{l}=-.5$ $v_{3}^{l}=\left[\begin{array}{lll}-.8 & .4 & .4\end{array}\right]$
L^{\prime}	$\begin{array}{clll} \lambda_{1}=1 & v_{1}=\left[\begin{array}{llllll} 0 & 0 & 0 & .6 & .6 & .6 \end{array}\right] \\ \lambda_{2}=1 & v_{2}=\left[\begin{array}{llllll} .5 & .7 & .5 & 0 & 0 & 0 \end{array}\right] \\ \lambda_{3}=0 & v_{3}=\left[\begin{array}{llllll} .7 & 0 & -.7 & 0 & 0 & 0 \end{array}\right] \\ \lambda_{4}=-.5 & v_{4}=\left[\begin{array}{llllll} 0 & 0 & 0 & 0 & -.7 & .7 \end{array}\right] \\ \lambda_{5}=-.5 & v_{5}=\left[\begin{array}{lllllll} 0 & 0 & 0 & -.8 & .4 & .4 \end{array}\right] \\ \lambda_{6}=-1 & v_{6}=\left[\begin{array}{llllll} .5 & -.7 & .5 & 0 & 0 & 0 \end{array}\right] \end{array}$

$\square \quad$ The eigenvalues/vectors of L^{\prime} compose of the eigenvalues/vectors of the submatrices L_{u}^{\prime} and L_{l}^{\prime}, with unconnected vertices set to 0
$\square \quad$ The largest eigenvalue of L_{u}^{\prime} and L_{l}^{\prime} are both 1 for the ideal case

Why use multiple eigenvectors

\square The largest eigenvalue of L_{u}^{\prime} and L_{l}^{\prime} is 1 for the ideal (disconnected) case

$$
\lambda_{1}=\lambda_{2}=1 \Rightarrow\left|\lambda_{1}-\lambda_{2}\right|=0
$$

- In non-ideal case, $\lambda_{2}<\lambda_{1}$
- The larger the eigenvalue (for L^{\prime}), the more cohesive the cluster (this is opposite for L)
$\square\left|\lambda_{k}-\lambda_{k+1}\right|$ is called eigengap or spectral gap
- Large $\left|\lambda_{k}-\lambda_{k+1}\right|$ implies higher cohesion in the clusters given by μ_{k} than those by μ_{k+1}
- Evaluate whether to use a eigenvector in clustering by its eigengap from the previous

Reconciliation with divergence

\square No direct relation between the normalized $L^{\prime}($ or L) with divergence
\Rightarrow As we have seen values in the eigenvector of largest eigenvalue μ_{1} for L^{\prime} is not constant
\square To see a relationship requires new insights from graph signal processing

- Values in eigenvectors of smaller eigenvalues for L^{\prime} vary more rapidly across the graph

Reconciliation with divergence

\square Values in eigenvectors of smaller eigenvalues for L^{\prime} vary more rapidly across the graph

Example:

- At the largest eigenvalue (for L^{\prime})
- Not exactly but still, almost constant everywhere
- Coincides with the lowest divergence case
- At larger eigenvalues (for L^{\prime})
- Smaller variation across connected vertices
- Coincides with lower divergence case
- At small eigenvalues (for L^{\prime})
- Large variation across connected vertices Coincides with higher divergence case

L_{u}^{\prime} from earlier example
$\begin{array}{\|llr} \lambda_{1}^{u}=1 \\ .5 & .7 & .5 \\ 0 & -1 & -2 \\ & \text { not constant! } \end{array}$
$\begin{array}{\|cc} \hline \lambda_{3}^{u}=-1 \\ .5 & -.7 \\ 0 & .5 \\ 0 & -1 \end{array}$

Signal processing

\square A discrete-time signal is a sequence of (sampled) values $f(0), \ldots, f(N-1)$ of some variable

\square Signal processing transforms the signal from one domain to another to detect possible properties
\square Fourier transform converts signals from the time domain into the frequency domain $U(0), \ldots, U(N-1)$

$$
U(k)=\sum_{t=0}^{N-1} f(t) \cdot e^{-\frac{i 2 \pi}{N} k t}
$$

\square A signal in the time domain is a 1-D vector - More flexible if consider as a graph

Graph Signal Processing

1970 Hall An r-dimensional quadratic placement algorithm
1972 Donath and Hoffman Algorithms for partitioning of graphs and computer logic based on eigenvectors of connected matrices
1973 Fiedler Algebraic connectivity of graphs
Donath and Hoffman Lower bounds for the partitioning of graphs
1975 Fiedler Eigenvectors of acyclic matrices
Fiedler A property of eigenvectors of nonnegative symmetric matrices \& its applications to graph theory
1982 Barnes An algorithm for partitioning of nodes of a graph
1984 Barnes and Hoffman Partitioning, spectra and linear programming
1989 Pothen et al. Partitioning sparse matrices with eigenvalues of graph
1991 Wei and Cheng Ratio cut partitioning for hierarchical designs
1992 Hagen and Kahng New spectral methods for ratio cut partitioning and clustering
1993 Wu and Leahy An optimal graph theoretic approach to data clustering
1997 Shi and Malik Normalized cuts and image segmentation
2001 Ng et al. On spectral clustering: Analysis and an algorithm
2003 Belkin and Niyogi Laplacian eigenmaps for dimensionality reduction and data representation
2009 Hammond et al. Wavelets on graph via spectral graph theory 2013 Shuman et al. The emerging field of signal processing on graphs 2019 Stanković and Sejdić (Ed) Vertex-frequency analysis of graph signals © 2021. Ng Yen Kaow

Interpreting the eigenbasis

\square A eigenvector x of the (non-normalized) graph Laplacian L fulfills $L x=\lambda x$
\square Since $L x=\left[\begin{array}{c}\Delta f\left(v_{1}\right) \\ \vdots\end{array}\right]$ (recall Part 1), $\lambda x=\left[\begin{array}{c}\Delta f\left(v_{1}\right) \\ \vdots\end{array}\right]$
\square The eigenvector x corresponds to the values $f(v)$ where $\lambda f(v) \approx \Delta f(v)$

- A small λ indicates that $f(v)$ does not vary much from $f\left(v^{\prime}\right)$ of its neighbors v^{\prime}
\square The smallest λ (for a connected graph) is 0 , indicating that $\forall v \Delta f(v)=0$
- In which case $f(v)=$ const (stationary state)

I nterpreting the eigenbasis

\square A eigenvector $x=\left[f\left(v_{1}\right) \quad f\left(v_{2}\right) \quad\right.$... $]$ of L furthermore minimizes $\frac{x^{\top} L x}{x^{\top} x}$ (Rayleigh quotient)
\square Since $L x=\left[\begin{array}{c}\Delta f\left(v_{1}\right) \\ \vdots\end{array}\right]$, we have

$$
x^{\top} L x=\left[\begin{array}{ll}
f\left(v_{1}\right) & \ldots .
\end{array}\right]\left[\begin{array}{c}
\Delta f\left(v_{1}\right) \\
\vdots
\end{array}\right]=\sum_{v} f(v) \Delta f(v)
$$

$\Rightarrow x^{\top} L x=$ projection of Δf on eigenvector x
$\Rightarrow \frac{x^{\top} L x}{x^{\top} x}=$ projection of Δf on unit eigenvector x

- Furthermore the projection $\frac{x^{\top} L x}{x^{\top} x}=\lambda$ (eigenvalue of x)
\square A eigenvector is a distribution f that minimizes the total differences between neighboring

Interpreting the eigenbasis

\square A eigenvector $=$ a distribution f that minimizes the total differences between neighboring $f(v)$ values
$\square f(v)$ values from eigenvector of $\lambda=0$

- $f(v)=$ const
\Rightarrow zero differences

From Shuman et al. The emerging field of signal processing on graphs, 2013
\square If the graph consists of two disconnected components, the $f(v)$ values of the individual components can have different constant values

Interpreting the eigenbasis

\square A eigenvector $=$ a distribution f that minimizes the total differences between neighboring $f(v)$ values
$\square f(v)$ values from eigenvector of $\lambda=0$

- $f(v)=$ const
\Rightarrow zero differences
$\square f(v)$ values for eigenvector of $2^{\text {nd }}$ smallest λ
- Orthogonality with eigenvector of $\lambda=0$ forces large variations in $f(v)$

Interpreting the eigenbasis

$\square f(v)$ values from eigenvector of $50^{\text {th }}$ smallest λ

- Orthogonality of this eigenvector with the $1^{\text {st }} \sim 49^{\text {th }}$ smallest eigenvectors forces distinctly different variations in $f(v)$ from those eigenvectors

From Shuman et al. The emerging field of signal processing on graphs, 2013

I nterpreting the eigenbasis
\square Further developments on graph Fourier transform leads to the introduction of the Graph Neural Networks

Appendix

Other generalized eigensystem

\square A partitioning problem called graph partitioning problem was proposed in (Hendrickson et al., 1996)
\square The problem gives rise to an interesting eigensystem $L x=\lambda M x$, as pointed out in (Shewchuk, 2011)
\square For completeness we discuss this problem here

Graph Partitioning Problem

- Given edge weight matrix $W=\left(w_{i j}\right)$ and vertex mass matrix M with diagonal elements $\left(m_{i}\right)$, a 2-partitioning of an undirected graph $G=(V, E)$ is a partition of V into two groups S and \bar{S} such that $\operatorname{cut}(S, \bar{S})=\sum_{i \in S, j \in \bar{S}} w_{i j}$ is minimized under the constraint that $\sum_{i \in S} m_{i}=\sum_{i \in \bar{S}} m_{i}$, or $\mathbf{1}^{\top} M x=0$
- Observe that if $m_{i}=1$ for all i, then the condition $\sum_{i \in S} m_{i}=\sum_{i \in \bar{S}} m_{i}$ is the same as $|S|=|\bar{S}|$

Constrained optimization problem

\square Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x^{\top} M \in\{1,-1\}$ and $1^{\top} M x=0$

- $x_{i} \in\{1,-1\}$ and $\mathbf{1}^{\top} M x=0$ together enforce balance in the solution
- However, problem is NP-hard
- Recall that even the minimum bisection problem, where all edges and vertices have the same weight, is NP-hard

Relaxed Rayleigh quotient version

- Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x^{\top} M x=\sum_{i} m_{i}$ and $1^{\top} M x=0$
- $x_{i} \in\{1,-1\} \Rightarrow x^{\top} M x=\sum_{i} m_{i}$ but not the other way around
- Balance no longer enforced but that's the least of our worry for now because instead of the standard eigensystem
- Optimization must now be achieved through solving the generalized eigensystem

$$
L x=\lambda M x
$$

Relaxed Rayleigh quotient version

- Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x^{\top} M x=\sum_{i} m_{i}$ and $1^{\top} M x=0$
\square Optimize through $L x=\lambda M x$
\square Since 1 fulfills condition for L and $M, \mu_{k}=\mathbf{1}$
- However, eigenvectors in the solutions are not orthogonal but rather, M-orthogonal ($\mu_{i} M \mu_{j}=0$ for $i \neq j$)
$\square \mathbf{1}^{\top} M \mu_{k-1}=0$ is fulfilled
\square Convert to a standard eigenvalue system $M^{-1 / 2} L M^{-1 / 2} x=\lambda x$ to compute

Generalized eigensystem

\square Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x^{\top} M x=\sum_{i} m_{i}$ and $1^{\top} M x=0$
\square Let $y=M^{1 / 2} x$, that is, $x=M^{-1 / 2} y$

$$
\begin{gathered}
x^{\top} L x \Rightarrow y^{\top} M^{-1 / 2} L M^{-1 / 2} y \\
x^{\top} M x=\sum_{i} m_{i} \Rightarrow y^{\top} y=\sum_{i} m_{i} \\
\mathbf{1}^{\top} M x=0 \Rightarrow \mathbb{1}^{\top} M^{1 / 2} y=0
\end{gathered}
$$

Hence equivalently
\square Minimize $y M^{-1 / 2} L M^{-1 / 2} y$
subject to $y^{\top} y=\sum_{i} m_{i}$ and $\mathbb{1}^{\top} M^{1 / 2} y=0$

Generalized eigensystem

- Minimize $y M^{-1 / 2} L M^{-1 / 2} y$
subject to $y^{\top} y=\sum_{i} m_{i}$ and $1^{\top} M^{1 / 2} y=0$
\square By similar arguments as those for the Normalized Cut problem, it suffices that we eigendecompose $M^{-1 / 2} L M^{-1 / 2}$

