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Spectral Clustering
Part 3: The Normalized Laplacian
Ng Yen Kaow
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More constraint for balance
 Further constraints can be added to the 

eigenvalue system
 The solution to these problems will 

require the generalized eigensystem
𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥
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Generalized eigensystem 𝐿𝐿𝑥𝑥=𝜆𝜆𝜆𝜆𝑥𝑥
 Proposed as a solution to the problem of 

representing hypergraphs in Euclidean space 
(Fukunaga et al., 1984)

An edge in a 
hypergraph can be 

connected to multiple 
vertices

Find a representation where 
the vertices connected by 

edges with large weights are
brought closer to each other
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Generalized eigensystem 𝐿𝐿𝑥𝑥=𝜆𝜆𝜆𝜆𝑥𝑥
 The problem is shown to be equivalent to that of 

solving 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 (Van Driessche and Roose, 1995)
which corresponds to the optimization problem
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥

subject to 𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1
Proof.
The Lagrangian ℒ for the optimization problem is
ℒ 𝑥𝑥, 𝜆𝜆 = 𝑥𝑥⊤𝐿𝐿𝑥𝑥 + 𝜆𝜆(𝑥𝑥⊤𝜆𝜆𝑥𝑥 − 1)

Equating the derivative of ℒ to zero, 
𝜕𝜕ℒ
𝜕𝜕𝑥𝑥

= 2𝐿𝐿𝑥𝑥 − 2𝜆𝜆𝜆𝜆𝑥𝑥 = 0 ⇒ 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥
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Generalized eigensystem 𝐿𝐿𝑥𝑥=𝜆𝜆𝜆𝜆𝑥𝑥
 The problem is shown to be equivalent to that of 

solving 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 (Van Driessche and Roose, 1995)
which is from the optimization problem
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥

subject to 𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1
 In this case, let 𝑦𝑦 = 𝜆𝜆 ⁄1 2𝑥𝑥 (i.e. 𝑥𝑥 = 𝜆𝜆− ⁄1 2𝑦𝑦)

Then 𝑥𝑥⊤𝐿𝐿𝑥𝑥 ⇒ 𝑦𝑦⊤𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2𝑦𝑦, and
𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1 ⇒ 𝑦𝑦⊤𝑦𝑦 = 1

⇒ Minimize 𝑦𝑦𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2𝑦𝑦
subject to 𝑦𝑦⊤𝑦𝑦 = 1

which is a standard eigendecomposition problem 
of the matrix 𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2
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Normalized Laplacian 𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2

 The matrix 𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2 is now known as 
the normalized Laplacian

 It is shown to be positive semi-definite (Van 
Driessche and Roose, 1995)
⇒ Eigenvalues are all positive (does not matter for spectral 

clustering but still nice to have)

 However, 𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2 have deviated very 
far from the incidence matrix
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Normalized Cut Problem
 Given weight matrix 𝑊𝑊 = 𝑤𝑤𝑖𝑖𝑖𝑖 and 

weighted degree matrix 𝜆𝜆 = 𝑑𝑑𝑖𝑖
 Recall that a minimum ratio cut 

minimizes

where cut 𝑆𝑆, ̅𝑆𝑆 = ∑𝑖𝑖∈𝑆𝑆,𝑖𝑖∈�̅�𝑆 𝑤𝑤𝑖𝑖𝑖𝑖
 Minimizes difference between 

the number of vertices
 A normalized cut attempts to minimize the 

difference between the sum of the edge 
weights adjacent to each vertex

ratio 𝑆𝑆, ̅𝑆𝑆 = cut 𝑆𝑆, ̅𝑆𝑆
1
𝑆𝑆

+
1
̅𝑆𝑆

Note: For convenience we use 𝜆𝜆 to denote what we denoted as 𝜆𝜆′ in earlier slides
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 Given weight matrix 𝑊𝑊 = 𝑤𝑤𝑖𝑖𝑖𝑖 and 
weighted degree matrix 𝜆𝜆 = 𝑑𝑑𝑖𝑖 , the 
normalized cut of an undirected graph 𝐺𝐺 =
𝑉𝑉,𝐸𝐸 is a partition of 𝑉𝑉 into two groups 𝑆𝑆

and ̅𝑆𝑆 such that 

ncut 𝑆𝑆, ̅𝑆𝑆 = cut 𝑆𝑆, ̅𝑆𝑆
1

vol 𝑆𝑆
+

1
vol ̅𝑆𝑆

is minimized, where vol 𝑆𝑆 = ∑𝑖𝑖∈𝑆𝑆 𝑑𝑑𝑖𝑖, that is, 
sum of all the weights of the edges adjacent 
to vertices in 𝑆𝑆, and cut 𝑆𝑆, ̅𝑆𝑆 = ∑𝑖𝑖∈𝑆𝑆,𝑖𝑖∈ ̅𝑆𝑆 𝑤𝑤𝑖𝑖𝑖𝑖

Normalized Cut Problem

Note: vol 𝑆𝑆 + vol ̅𝑆𝑆 = 2∑𝑤𝑤𝑖𝑖𝑖𝑖



© 2021. Ng Yen Kaow

Mathematical property
 Represent a partition 𝑆𝑆, ̅𝑆𝑆 of 𝑉𝑉 with 𝑥𝑥 ∈ ℝ𝑛𝑛, where

𝑥𝑥𝑖𝑖 =

1
vol 𝑆𝑆

if 𝑖𝑖 ∈ 𝑆𝑆

−
1

vol ̅𝑆𝑆
if 𝑖𝑖 ∈ ̅𝑆𝑆

1. 𝑥𝑥⊤𝐿𝐿𝑥𝑥 = ∑𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
2 = 1

vol 𝑆𝑆
+ 1

vol �̅�𝑆

2
∑𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖

=
1

vol 𝑆𝑆
+

1
vol ̅𝑆𝑆

2

cut 𝑆𝑆,�𝑆𝑆

2. 𝑥𝑥⊤𝜆𝜆𝑥𝑥 = ∑𝑖𝑖 𝑑𝑑𝑖𝑖 𝑥𝑥𝑖𝑖 2 = ∑𝑖𝑖∈𝑆𝑆
𝑑𝑑𝑖𝑖

vol 𝑆𝑆 2 + ∑𝑖𝑖∈�̅�𝑆
𝑑𝑑𝑖𝑖

vol �̅�𝑆 2 = 1
vol 𝑆𝑆

+ 1
vol �̅�𝑆

1 + 2 ⇒
𝑥𝑥⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝜆𝜆𝑥𝑥

= cut 𝑆𝑆, ̅𝑆𝑆
1

vol 𝑆𝑆
+

1
vol ̅𝑆𝑆

= ncut 𝑆𝑆, ̅𝑆𝑆

As in Ratio Cut, 
𝑥𝑥𝑖𝑖 changes 

according to 
the solution
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Constrained optimization problem
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆 −𝑊𝑊

subject to 𝑥𝑥𝑖𝑖 ∈
1

vol 𝑆𝑆
,− 1

vol ̅𝑆𝑆
, 

𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1, and
𝟏𝟏⊤𝜆𝜆𝑥𝑥 = 0

 Problem is NP-hard
 Note:

 𝟏𝟏⊤𝜆𝜆𝑥𝑥 = ∑𝑖𝑖∈𝑆𝑆
𝑑𝑑𝑖𝑖

vol 𝑆𝑆
− ∑𝑖𝑖∈�̅�𝑆

𝑑𝑑𝑖𝑖
vol �̅�𝑆

= 1 − 1 = 0


1

vol 𝑆𝑆
,− 1

vol �̅�𝑆
are not the only possible choices

 See https://arxiv.org/abs/1311.2492
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Relaxed Rayleigh quotient version
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆 −𝑊𝑊

subject to 𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1 and 𝟏𝟏⊤𝜆𝜆𝑥𝑥 = 0

 This is equivalent to the earlier generalized 
eigensystem 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 except for the 
additional requirement of 𝟏𝟏⊤𝜆𝜆𝑥𝑥 = 0
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Generalized eigensystem
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆 −𝑊𝑊

subject to 𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1 and 𝟏𝟏⊤𝜆𝜆𝑥𝑥 = 0

 Let 𝑦𝑦 = 𝜆𝜆 ⁄1 2𝑥𝑥, that is, 𝑥𝑥 = 𝜆𝜆− ⁄1 2𝑦𝑦
𝑥𝑥⊤𝐿𝐿𝑥𝑥 ⇒ 𝑦𝑦⊤𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2𝑦𝑦
𝑥𝑥⊤𝜆𝜆𝑥𝑥 = 1 ⇒ 𝑦𝑦⊤𝑦𝑦 = 1

𝟏𝟏⊤𝜆𝜆𝑥𝑥 = 0 ⇒ 𝟏𝟏⊤𝜆𝜆 ⁄1 2𝑦𝑦 = 0
Hence equivalently
 Minimize 𝑦𝑦𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2𝑦𝑦

subject to 𝑦𝑦⊤𝑦𝑦 = 1 and 𝟏𝟏⊤𝜆𝜆 ⁄1 2𝑦𝑦 = 0
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 Minimize 𝑦𝑦𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2𝑦𝑦 where 𝐿𝐿 = 𝜆𝜆 −𝑊𝑊
subject to 𝑦𝑦⊤𝑦𝑦 = 1 and 𝟏𝟏⊤𝜆𝜆 ⁄1 2𝑦𝑦 = 0

 All eigenvectors of 𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2 fulfill 𝟏𝟏⊤𝜆𝜆 ⁄1 2𝑦𝑦 = 0
 As 𝟏𝟏 is a eigenvector for 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 with 

eigenvalue 0, 𝜆𝜆 ⁄1 2𝟏𝟏 is a eigenvector for this 
system with eigenvalue 0 (smallest)

 Since eigenvectors of this system are 
orthogonal, 𝜆𝜆 ⁄1 2𝟏𝟏 𝜇𝜇𝑘𝑘−1 = 0
⇒ 𝟏𝟏⊤𝜆𝜆 ⁄1 2𝑦𝑦 = 0 fulfilled
In fact the eigenvalues for this system are the same as those for 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥, even though the 
eigenvectors are different (related by 𝑦𝑦 = 𝑀𝑀 ⁄1 2𝑥𝑥)

⇒ Eigendecomposition of 𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2 suffices

Generalized eigensystem
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Exercise
1

4

3

7

5

2

6 8

 Find normalized Laplacian 
𝜆𝜆− ⁄1 2𝐿𝐿𝜆𝜆− ⁄1 2 for graph and 
eigendecompose it

To find 𝜆𝜆− ⁄1 2 in Python, use SciPy
scipy.linalg.sqrtm(scipy.linalg.inv(D))

All edges have weight 1
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Eigendecomposition
1

4

3

7

5

2

6 8

𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4 𝜇𝜇5 𝜇𝜇6 𝜇𝜇7 𝜇𝜇8
0.3485 0.0034 0.6240 -0.2451 -0.0704 -0.5023 0.1342 0.3922

-0.0304 0.6546 -0.3393 -0.2014 0.0768 0.0885 0.4973 0.3922
0.4129 -0.3896 -0.1906 -0.0484 -0.5545 0.4474 0.1265 0.3397

-0.2148 -0.2574 -0.4363 -0.5537 0.0989 -0.2859 -0.4286 0.3397
-0.4292 0.2801 0.1122 0.4236 -0.5021 -0.0836 -0.3638 0.3922
0.5058 0.1486 -0.0793 0.3598 0.4989 0.1541 -0.4454 0.3397

-0.1662 -0.4557 -0.2360 0.5096 0.2180 -0.3552 0.4457 0.2774
-0.4397 -0.2128 0.4406 -0.1475 0.3513 0.5487 0.0744 0.3397

𝜆𝜆1 𝜆𝜆2 𝜆𝜆3 𝜆𝜆4 𝜆𝜆5 𝜆𝜆6 𝜆𝜆7 𝜆𝜆8
1.6760 1.5100 1.42700 1.3100 0.9900 0.5880 0.4990 0.0

 Eigenvalues and eigenvectors

The limiting 
distribution of 
the normalized 
Laplacian is not 
𝑓𝑓 𝑣𝑣 = const 
since the 
normalized 
Laplacian is 
unrelated to the 
incidence matrix

All edges have weight 1
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Shi and Malik (1997, 2000)
 Proposed the NP-hard ncut problem 
 Related ncut to generalized eigenvalue 

system, resulting in the now ubiquitous
normalized Laplacian

 Use Gaussian function 𝑒𝑒−𝑑𝑑2/2𝜎𝜎2 for weights
 Previously used for min-cut (Wu and Leahy, 1993)
 Used for RatioCut later (Wang and Siskin, 2003)

 Clustering with multiple eigenvectors (Van 
Driessche and Roose, 1995; Shi and Malik, 
2000)
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Clustering w/ multiple eigenvectors
 With normalized Laplacian

1

4

3

7

5

2

6 8

𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4 𝜇𝜇5 𝜇𝜇6 𝜇𝜇7 𝜇𝜇8
0.3485 0.0034 0.6240 -0.2451 -0.0704 -0.5023 0.1342 0.3922

-0.0304 0.6546 -0.3393 -0.2014 0.0768 0.0885 0.4973 0.3922
0.4129 -0.3896 -0.1906 -0.0484 -0.5545 0.4474 0.1265 0.3397

-0.2148 -0.2574 -0.4363 -0.5537 0.0989 -0.2859 -0.4286 0.3397
-0.4292 0.2801 0.1122 0.4236 -0.5021 -0.0836 -0.3638 0.3922
0.5058 0.1486 -0.0793 0.3598 0.4989 0.1541 -0.4454 0.3397

-0.1662 -0.4557 -0.2360 0.5096 0.2180 -0.3552 0.4457 0.2774
-0.4397 -0.2128 0.4406 -0.1475 0.3513 0.5487 0.0744 0.3397

Use the values 
from the top few 
eigenvectors for 
clustering (with, for 
example, k-means)

All edges have weight 1
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Clustering w/ multiple eigenvectors
 With graph partitioning Laplacian*

1

4

3

7

5

2

6 8

𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4 𝜇𝜇5 𝜇𝜇6 𝜇𝜇7 𝜇𝜇8
0.5677 -0.1583 -0.4862 0.3536 0.2315 -0.2855 0.1766 0.3536

-0.4281 0.6222 -0.2059 0.3536 0.0622 0.2469 0.2690 0.3536
0.3517 0.1203 0.2984 -0.3536 0.5170 0.5007 -0.0694 0.3536

-0.0855 0.0612 0.6267 0.3536 0.1159 -0.4899 -0.3044 0.3536
-0.5514 -0.3549 -0.3566 -0.3536 0.3216 -0.1795 -0.2392 0.3536
0.2351 0.3822 -0.2014 -0.3536 -0.5589 -0.1183 -0.4263 0.3536

-0.0354 -0.1476 0.2596 -0.3536 -0.2798 -0.2029 0.7349 0.3536
-0.0540 -0.5251 0.0654 0.3536 -0.4096 0.5286 -0.1411 0.3536

The resultant 
eigenvectors are 
less suitable for 
clustering

All edges and vertices 
have weight 1

*see Appendix
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Single/multiple eigenvectors use
 Historical use based on Fiedler vector
 Sign cut or zero threshold cut
 Median cut (ensures balance)
 Sweep/criterion cut

 Sort vertices by Fiedler vector values and cut at 
the lowest value of some cost function

 Jump/gap cut
 Sort vertices by Fiedler vector values and cut at 

the point of largest gap

 After Shi and Malik, multiple eigenvectors
 Simultaneous k-way (Shi and Malik, 2000)
 k-means (Ng, Jordan and Weiss, 2001)
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Theoretical justification
 How should we view the normalized Laplacian

 Since normalized Laplacian cannot be related to the 
incidence matrix, it requires a new characterization

⇒ Random walk characterization (Meilă and Shi, 
2000)

 Arguments based on minimizing divergence and 
objective functions justify only the use of only one 
eigenvector (not multiple eigenvectors)
 Furthermore, both arguments are no longer valid for the 

normalized Laplacian
⇒ (Weiss, 1999; Meilă and Shi, 2000; Ng, Jordan and 

Weiss, 2001) successively give justification for 
the use of the eigenvectors
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Random walk characterization
 Let 𝑃𝑃 = 𝜆𝜆−1𝑊𝑊 (where 𝐿𝐿 = 𝜆𝜆 −𝑊𝑊)
 A solution 𝑥𝑥 for 𝑃𝑃𝑥𝑥 = 𝜆𝜆𝑥𝑥 is a solution for the 

generalized eigensystem 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 (with 
eigenvalues 1 − 𝜆𝜆), and vice versa
Proof.
𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 ⇒ 𝜆𝜆−1 𝜆𝜆 −𝑊𝑊 𝑥𝑥 = 𝜆𝜆−1𝜆𝜆𝜆𝜆𝑥𝑥

𝐼𝐼 − 𝑃𝑃 𝑥𝑥 = 𝜆𝜆𝑥𝑥
𝑃𝑃𝑥𝑥 = (𝐼𝐼 − 𝜆𝜆)𝑥𝑥
𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥

𝑃𝑃𝑥𝑥 = (𝐼𝐼 − 𝜆𝜆)𝑥𝑥 ⇒ 𝜆𝜆−1𝑊𝑊𝑥𝑥 = (𝐼𝐼 − 𝜆𝜆)𝑥𝑥
𝐼𝐼 − 𝜆𝜆−1𝑊𝑊 𝑥𝑥 = 𝜆𝜆𝑥𝑥

𝜆𝜆 −𝑊𝑊 𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥
𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥
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Random walk characterization
 Let 𝑃𝑃 = 𝜆𝜆−1𝑊𝑊 (where 𝐿𝐿 = 𝜆𝜆 −𝑊𝑊)
 A solution 𝑥𝑥 for 𝑃𝑃𝑥𝑥 = 𝜆𝜆𝑥𝑥 is a solution for the 

generalized eigensystem 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥 (with 
eigenvalues 1 − 𝜆𝜆), and vice versa
 The normalized Laplacian 𝜆𝜆−1/2𝐿𝐿𝜆𝜆−1/2

computes the solutions to 𝑃𝑃𝑥𝑥 = 𝜆𝜆𝑥𝑥 for the 
normalized matrix 𝑃𝑃

 However, 𝑃𝑃 is not symmetric
 Doesn’t decompose to orthogonal 

eigenbasis
 On the other hand 𝜆𝜆−1/2𝐿𝐿𝜆𝜆−1/2 is symmetric

 Chosen over 𝑃𝑃 for spectral clustering
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Random walk characterization
 Each row in 𝑃𝑃 sums to 1 (normalized)
 𝑃𝑃 is a Markovian transition matrix

 To start a walk from 𝑣𝑣1, let 𝑥𝑥 =
1
0
0
⋮

, then 𝑃𝑃𝑙𝑙𝑥𝑥 is the 

probability distribution after 𝑙𝑙 steps from 𝑣𝑣1

 𝑥𝑥𝑖𝑖 for neighboring vertices will become more 
similar ⇒ gradients decrease

 Parts of the graph will even out more quickly
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Random walk characterization
 Example: Let 𝑃𝑃 be a 3 × 3 matrix

𝑃𝑃𝑥𝑥 =
𝑝𝑝11 𝑝𝑝12 𝑝𝑝13
𝑝𝑝21 𝑝𝑝22 𝑝𝑝23
𝑝𝑝31 𝑝𝑝32 𝑝𝑝33

𝑓𝑓(𝑣𝑣1)
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3

=
𝑝𝑝11𝑓𝑓(𝑣𝑣1) + 𝑝𝑝12𝑓𝑓 𝑣𝑣2 + 𝑝𝑝13𝑓𝑓 𝑣𝑣3
𝑝𝑝21𝑓𝑓(𝑣𝑣1) + 𝑝𝑝22𝑓𝑓 𝑣𝑣2 + 𝑝𝑝23𝑓𝑓 𝑣𝑣3
𝑝𝑝31𝑓𝑓(𝑣𝑣1) + 𝑝𝑝32𝑓𝑓 𝑣𝑣2 + 𝑝𝑝33𝑓𝑓 𝑣𝑣3

⇒ 𝑃𝑃𝑥𝑥 =
1 1 0
1 0 0
0 0 1

𝑓𝑓(𝑣𝑣1)
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3

=
𝑓𝑓(𝑣𝑣1) + 𝑓𝑓 𝑣𝑣2

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣3𝑣𝑣2

𝑣𝑣1

𝑣𝑣3

 𝑥𝑥𝑖𝑖 for neighboring vertices will become more 
similar ⇒ gradients decrease

 Parts of the graph will even out more quickly
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Random walk characterization
 A limiting/stable/stationary state for a random 

walk 𝑃𝑃 is a distribution 𝑥𝑥∗ where 𝑃𝑃𝑥𝑥∗ = 𝑥𝑥∗

 By definition 𝑥𝑥∗ is a eigenvector of 𝑃𝑃 with 𝜆𝜆 = 1

Furthermore, 𝑥𝑥∗ is everywhere constant if 𝑃𝑃 is
• A transition matrix for a regular graph

By symmetry of the graph, a random walk from any vertex is 
equally likely to be at any other vertex in the limit

• A Laplacian 𝐿𝐿 = 𝑀𝑀𝑀𝑀⊤ for incidence matrix 𝑀𝑀
First note that 𝑥𝑥∗ minimizes 𝑥𝑥⊤𝐿𝐿𝑥𝑥. On the other hand we know 
that 𝑥𝑥⊤𝐿𝐿𝑥𝑥 = ∑𝑣𝑣 𝑓𝑓(𝑣𝑣)∆𝑓𝑓(𝑣𝑣). Since ∆𝑓𝑓(𝑣𝑣) = 0 for the everywhere 
constant 𝑥𝑥′, we have 𝑥𝑥′⊤𝐿𝐿𝑥𝑥′ = 0, its minimum. Hence 𝑥𝑥∗ = 𝑥𝑥′



© 2021. Ng Yen Kaow

Why use multiple eigenvectors
 For illustrative convenience use (an 

adjacency matrix) 𝐿𝐿′ = 𝜆𝜆−1/2 𝑊𝑊 𝜆𝜆−1/2

instead of the normalized Laplacian 𝐿𝐿
 𝐿𝐿′ = 𝐼𝐼 − 𝐿𝐿 (𝐿𝐿 = normalized Laplacian)

Proof. 𝐿𝐿 = 𝜆𝜆−1/2 𝜆𝜆 −𝑊𝑊 𝜆𝜆−1/2

= 𝜆𝜆−1/2 𝜆𝜆 𝜆𝜆−1/2 − 𝜆𝜆−1/2 𝑊𝑊 𝜆𝜆−1/2

= 𝐼𝐼 − 𝜆𝜆−1/2 𝑊𝑊 𝜆𝜆−1/2 = 𝐼𝐼 − 𝐿𝐿′

 Results in the same eigenvectors but 
eigenvalues become 1 − 𝜆𝜆1, … , 1 − 𝜆𝜆𝑘𝑘
 Since eigenvalues of 𝐿𝐿 has range in [0,2], 

eigenvalues of 𝐿𝐿′ has range in [-1,1]
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Why use multiple eigenvectors

 The eigenvalues/vectors of 𝐿𝐿′ compose of the eigenvalues/vectors 
of the submatrices 𝐿𝐿𝑢𝑢′ and 𝐿𝐿𝑙𝑙′ , with unconnected vertices set to 0

 The largest eigenvalue of 𝐿𝐿𝑢𝑢′ and 𝐿𝐿𝑙𝑙′ are both 1 for the ideal case

Matrix Eigenvalues/vectors (decreasing order)

𝐿𝐿𝑢𝑢′

𝐿𝐿𝑙𝑙′

𝐿𝐿′
𝐿𝐿′ =

0 .7 0
.7 0 .7
0 .7 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 .5 .5
.5 0 .5
.5 .5 0

𝑣𝑣1𝑢𝑢 = .5 .7 .5
𝑣𝑣2𝑢𝑢 = .7 0 −.7
𝑣𝑣3𝑢𝑢 = .5 −.7 .5

𝜆𝜆1𝑢𝑢 = 1
𝜆𝜆2𝑢𝑢 = 0
𝜆𝜆3𝑢𝑢 = −1

𝑣𝑣1𝑙𝑙 = .6 .6 .6
𝑣𝑣2𝑙𝑙 = 0 −.7 −.7
𝑣𝑣3𝑙𝑙 = −.8 .4 .4

𝜆𝜆1𝑙𝑙 = 1
𝜆𝜆2𝑙𝑙 = −.5
𝜆𝜆3𝑙𝑙 = −.5

𝑣𝑣1 = 0 0 0 .6 .6 .6
𝑣𝑣2 = .5 .7 .5 0 0 0
𝑣𝑣3 = .7 0 −.7 0 0 0
𝑣𝑣4 = 0 0 0 0 −.7 .7
𝑣𝑣5 = 0 0 0 −.8 .4 .4
𝑣𝑣6 = .5 −.7 .5 0 0 0

𝜆𝜆1 = 1
𝜆𝜆2 = 1
𝜆𝜆3 = 0
𝜆𝜆4 = −.5
𝜆𝜆5 = −.5
𝜆𝜆6 = −1

𝐿𝐿𝑢𝑢′

𝐿𝐿𝑙𝑙′

zeroes!

zeroes!
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Why use multiple eigenvectors
 The largest eigenvalue of 𝐿𝐿𝑢𝑢′ and 𝐿𝐿𝑙𝑙′ is 1 for 

the ideal (disconnected) case
𝜆𝜆1 = 𝜆𝜆2 = 1 ⇒ 𝜆𝜆1 − 𝜆𝜆2 = 0

 In non-ideal case, 𝜆𝜆2 < 𝜆𝜆1
 The larger the eigenvalue (for 𝐿𝐿′), the more 

cohesive the cluster (this is opposite for 𝐿𝐿)
 𝜆𝜆𝑘𝑘 − 𝜆𝜆𝑘𝑘+1 is called eigengap or spectral gap
 Large 𝜆𝜆𝑘𝑘 − 𝜆𝜆𝑘𝑘+1 implies higher cohesion in 

the clusters given by 𝜇𝜇𝑘𝑘 than those by 𝜇𝜇𝑘𝑘+1
 Evaluate whether to use a eigenvector in 

clustering by its eigengap from the previous 
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Reconciliation with divergence
 No direct relation between the normalized 
𝐿𝐿′ (or 𝐿𝐿) with divergence 
⇒ As we have seen values in the 

eigenvector of largest eigenvalue 𝜇𝜇1 for 
𝐿𝐿′ is not constant

 To see a relationship requires new insights 
from graph signal processing
 Values in eigenvectors of smaller 

eigenvalues for 𝐿𝐿′ vary more rapidly 
across the graph
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Reconciliation with divergence
 Values in eigenvectors of smaller eigenvalues for 

𝐿𝐿′ vary more rapidly across the graph
Example: 𝐿𝐿𝑢𝑢′ from earlier 

example
𝜆𝜆1𝑢𝑢 = 1

𝜆𝜆2𝑢𝑢 = 0

𝜆𝜆3𝑢𝑢 = −1

 At the largest eigenvalue (for 𝐿𝐿′)
 Not exactly but still, almost constant 

everywhere
 Coincides with the lowest divergence case

 At larger eigenvalues (for 𝐿𝐿′)
 Smaller variation across connected 

vertices
 Coincides with lower divergence case

 At small eigenvalues (for 𝐿𝐿′)
 Large variation across connected vertices
 Coincides with higher divergence case 0 1 2

.5 −.7 .5

0 1 2
.7 0 −.7

0 1 2
.5 .7 .5

not constant!
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Signal processing

 Signal processing transforms the signal from one 
domain to another to detect possible properties
 Fourier transform converts signals from the time 

domain into the frequency domain 𝑈𝑈 0 , … ,𝑈𝑈(𝑁𝑁 − 1)

𝑈𝑈 𝑘𝑘 = ∑𝑡𝑡=0𝑁𝑁−1 𝑓𝑓 𝑡𝑡 ⋅ 𝑒𝑒−
𝑖𝑖2𝑖𝑖
𝑁𝑁 𝑘𝑘𝑡𝑡

 A signal in the time domain is a 1-D vector
 More flexible if consider as a graph

 Use eigenbasis as transformed domain

 A discrete-time signal
is a sequence of
(sampled) values 
𝑓𝑓 0 , … ,𝑓𝑓(𝑁𝑁 − 1)
of some variable
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1970
1972

1973

1975

1982
1984
1989
1991
1992
1993
1997
2001
2003

2009
2013
2019

Hall An r-dimensional quadratic placement algorithm
Donath and Hoffman Algorithms for partitioning of graphs and computer logic based on 
eigenvectors of connected matrices
Fiedler Algebraic connectivity of graphs 
Donath and Hoffman Lower bounds for the partitioning of graphs
Fiedler Eigenvectors of acyclic matrices
Fiedler A property of eigenvectors of nonnegative symmetric matrices & its applications 
to graph theory
Barnes An algorithm for partitioning of nodes of a graph
Barnes and Hoffman Partitioning, spectra and linear programming
Pothen et al. Partitioning sparse matrices with eigenvalues of graph
Wei and Cheng Ratio cut partitioning for hierarchical designs
Hagen and Kahng New spectral methods for ratio cut partitioning and clustering
Wu and Leahy An optimal graph theoretic approach to data clustering
Shi and Malik Normalized cuts and image segmentation
Ng et al. On spectral clustering: Analysis and an algorithm
Belkin and Niyogi Laplacian eigenmaps for dimensionality reduction and data 
representation
Hammond et al. Wavelets on graph via spectral graph theory
Shuman et al. The emerging field of signal processing on graphs
Stanković and Sejdić (Ed) Vertex-frequency analysis of graph signals

Graph Signal Processing
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Interpreting the eigenbasis
 A eigenvector 𝑥𝑥 of the (non-normalized) graph 

Laplacian 𝐿𝐿 fulfills 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝑥𝑥

 Since 𝐿𝐿𝑥𝑥 = ∆𝑓𝑓(𝑣𝑣1)
⋮ (recall Part 1), 𝜆𝜆𝑥𝑥 = ∆𝑓𝑓(𝑣𝑣1)

⋮
 The eigenvector 𝑥𝑥 corresponds to the values 𝑓𝑓 𝑣𝑣

where 𝜆𝜆𝑓𝑓 𝑣𝑣 ≈ ∆𝑓𝑓 𝑣𝑣
 A small 𝜆𝜆 indicates that 𝑓𝑓(𝑣𝑣) does not vary 

much from 𝑓𝑓(𝑣𝑣′) of its neighbors 𝑣𝑣′
 The smallest 𝜆𝜆 (for a connected graph) is 0, 

indicating that ∀𝑣𝑣∆𝑓𝑓 𝑣𝑣 = 0
 In which case 𝑓𝑓 𝑣𝑣 = const (stationary state)
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Interpreting the eigenbasis
 A eigenvector 𝑥𝑥 = 𝑓𝑓 𝑣𝑣1 𝑓𝑓 𝑣𝑣2 … of 𝐿𝐿

furthermore minimizes 𝑥𝑥
⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

(Rayleigh quotient)

 Since 𝐿𝐿𝑥𝑥 = ∆𝑓𝑓(𝑣𝑣1)
⋮ , we have

𝑥𝑥⊤𝐿𝐿𝑥𝑥 = 𝑓𝑓 𝑣𝑣1 … ∆𝑓𝑓(𝑣𝑣1)
⋮ = �

𝑣𝑣

𝑓𝑓(𝑣𝑣)∆𝑓𝑓(𝑣𝑣)

⇒ 𝑥𝑥⊤𝐿𝐿𝑥𝑥 = projection of ∆𝑓𝑓 on eigenvector 𝑥𝑥
⇒ 𝑥𝑥⊤𝐿𝐿𝑥𝑥

𝑥𝑥⊤𝑥𝑥
= projection of ∆𝑓𝑓 on unit eigenvector 𝑥𝑥

 Furthermore the projection 𝑥𝑥
⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆 (eigenvalue of 𝑥𝑥)

 A eigenvector is a distribution 𝑓𝑓 that minimizes 
the total differences between neighboring
𝑓𝑓(𝑣𝑣) values
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Interpreting the eigenbasis
 A eigenvector = a distribution 𝑓𝑓 that minimizes the 

total differences between neighboring 𝑓𝑓(𝑣𝑣) values

 If the graph consists of two disconnected 
components, the 𝑓𝑓(𝑣𝑣) values of the individual 
components can have different constant values

 𝑓𝑓(𝑣𝑣) values from 
eigenvector of 𝜆𝜆 = 0
 𝑓𝑓 𝑣𝑣 = const

⇒ zero differences

From Shuman et al. The emerging field of signal processing on graphs, 2013
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Interpreting the eigenbasis
 A eigenvector = a distribution 𝑓𝑓 that minimizes the 

total differences between neighboring 𝑓𝑓(𝑣𝑣) values

From Shuman et al. The emerging field of signal processing on graphs, 2013

 𝑓𝑓(𝑣𝑣) values from 
eigenvector of 𝜆𝜆 = 0
 𝑓𝑓 𝑣𝑣 = const

⇒ zero differences
 𝑓𝑓(𝑣𝑣) values for 

eigenvector of 2nd

smallest 𝜆𝜆
 Orthogonality with 

eigenvector of 𝜆𝜆 = 0
forces large 
variations in 𝑓𝑓(𝑣𝑣) Highly-connected vertices have similar 𝑓𝑓(𝑣𝑣)
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Interpreting the eigenbasis
 𝑓𝑓(𝑣𝑣) values from eigenvector of 50th smallest 𝜆𝜆

 Orthogonality of this eigenvector with the 1st~49th smallest 
eigenvectors forces distinctly different variations in 𝑓𝑓(𝑣𝑣) from 
those eigenvectors

From Shuman et al. The emerging field of signal processing on graphs, 2013
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Interpreting the eigenbasis
 Further developments on graph Fourier 

transform leads to the introduction of the 
Graph Neural Networks
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Appendix
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Other generalized eigensystem
 A partitioning problem called graph 

partitioning problem was proposed in 
(Hendrickson et al., 1996) 

 The problem gives rise to an interesting 
eigensystem 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝑀𝑀𝑥𝑥, as pointed out in 
(Shewchuk, 2011)

 For completeness we discuss this 
problem here
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Graph Partitioning Problem
 Given edge weight matrix 𝑊𝑊 = 𝑤𝑤𝑖𝑖𝑖𝑖 and 

vertex mass matrix 𝑀𝑀 with diagonal 
elements 𝑚𝑚𝑖𝑖 , a 2-partitioning of an 
undirected graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 is a partition 
of 𝑉𝑉 into two groups 𝑆𝑆 and ̅𝑆𝑆 such that 
cut 𝑆𝑆, ̅𝑆𝑆 = ∑𝑖𝑖∈𝑆𝑆,𝑖𝑖∈ ̅𝑆𝑆 𝑤𝑤𝑖𝑖𝑖𝑖 is minimized under 
the constraint that ∑𝑖𝑖∈𝑆𝑆𝑚𝑚𝑖𝑖 = ∑𝑖𝑖∈ ̅𝑆𝑆 𝑚𝑚𝑖𝑖, or 
𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0
 Observe that if 𝑚𝑚𝑖𝑖 = 1 for all 𝑖𝑖, then the 

condition ∑𝑖𝑖∈𝑆𝑆𝑚𝑚𝑖𝑖 = ∑𝑖𝑖∈ ̅𝑆𝑆 𝑚𝑚𝑖𝑖 is the same 
as 𝑆𝑆 = ̅𝑆𝑆
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Constrained optimization problem
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆′ −𝑊𝑊

subject to 𝑥𝑥⊤𝑀𝑀 ∈ 1,−1 and 𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0
 𝑥𝑥𝑖𝑖 ∈ 1,−1 and 𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0 together enforce 

balance in the solution
 However, problem is NP-hard

 Recall that even the minimum bisection 
problem, where all edges and vertices have 
the same weight, is NP-hard
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Relaxed Rayleigh quotient version
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆′ −𝑊𝑊

subject to 𝑥𝑥⊤𝑀𝑀𝑥𝑥 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 and 𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0
 𝑥𝑥𝑖𝑖 ∈ 1,−1 ⇒ 𝑥𝑥⊤𝑀𝑀𝑥𝑥 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 but not the other 

way around
 Balance no longer enforced but that’s the least 

of our worry for now because instead of the 
standard eigensystem

 Optimization must now be achieved through 
solving the generalized eigensystem

𝐿𝐿𝑥𝑥 = 𝜆𝜆𝑀𝑀𝑥𝑥
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Relaxed Rayleigh quotient version
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆′ −𝑊𝑊

subject to 𝑥𝑥⊤𝑀𝑀𝑥𝑥 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 and 𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0
 Optimize through 𝐿𝐿𝑥𝑥 = 𝜆𝜆𝑀𝑀𝑥𝑥
 Since 𝟏𝟏 fulfills condition for 𝐿𝐿 and 𝑀𝑀, 𝜇𝜇𝑘𝑘 = 𝟏𝟏
 However, eigenvectors in the 

solutions are not orthogonal but rather, 
𝑀𝑀-orthogonal (𝜇𝜇𝑖𝑖𝑀𝑀𝜇𝜇𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗)
 𝟏𝟏⊤𝑀𝑀𝜇𝜇𝑘𝑘−1 = 0 is fulfilled

 Convert to a standard eigenvalue system 
𝑀𝑀− ⁄1 2𝐿𝐿𝑀𝑀− ⁄1 2𝑥𝑥 = 𝜆𝜆𝑥𝑥 to compute
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Generalized eigensystem
 Minimize 𝑥𝑥⊤𝐿𝐿𝑥𝑥 where 𝐿𝐿 = 𝜆𝜆′ −𝑊𝑊

subject to 𝑥𝑥⊤𝑀𝑀𝑥𝑥 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 and 𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0
 Let 𝑦𝑦 = 𝑀𝑀 ⁄1 2𝑥𝑥, that is, 𝑥𝑥 = 𝑀𝑀− ⁄1 2𝑦𝑦

𝑥𝑥⊤𝐿𝐿𝑥𝑥 ⇒ 𝑦𝑦⊤𝑀𝑀− ⁄1 2𝐿𝐿𝑀𝑀− ⁄1 2𝑦𝑦
𝑥𝑥⊤𝑀𝑀𝑥𝑥 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 ⇒ 𝑦𝑦⊤𝑦𝑦 = ∑𝑖𝑖𝑚𝑚𝑖𝑖

𝟏𝟏⊤𝑀𝑀𝑥𝑥 = 0 ⇒ 𝟏𝟏⊤𝑀𝑀 ⁄1 2𝑦𝑦 = 0
Hence equivalently
 Minimize 𝑦𝑦𝑀𝑀− ⁄1 2𝐿𝐿𝑀𝑀− ⁄1 2𝑦𝑦

subject to 𝑦𝑦⊤𝑦𝑦 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 and 𝟏𝟏⊤𝑀𝑀 ⁄1 2𝑦𝑦 = 0
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Generalized eigensystem
 Minimize 𝑦𝑦𝑀𝑀− ⁄1 2𝐿𝐿𝑀𝑀− ⁄1 2𝑦𝑦

subject to 𝑦𝑦⊤𝑦𝑦 = ∑𝑖𝑖𝑚𝑚𝑖𝑖 and 𝟏𝟏⊤𝑀𝑀 ⁄1 2𝑦𝑦 = 0
 By similar arguments as those for the 

Normalized Cut problem, it suffices that we 
eigendecompose 𝑀𝑀− ⁄1 2𝐿𝐿𝑀𝑀− ⁄1 2
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