Spectral Clustering Part 2: Weighted Graph Laplacians

Ng Yen Kaow

Recap

\square An intuition from the Laplacian function (in continuous space) gave us the graph Laplacian matrix (in graph space)
\square Subsequently people found out that the graph Laplacian possesses several properties that lend it to solve graph cutting problems

- The basic graph cutting problem is known as minimum cut in the literature

Minimum Cut Problem
\square The minimum cut of an undirected graph $G=(V, E)$ is a partition of V into two groups S and \bar{S} so that the number of edges between S and \bar{S} is minimized

- Solvable in polynomial time $O\left(|E||V|+|V|^{2} \log |V|\right)$ (Nagamochi et al 1992, Stoer-Wagner 1995)
- We saw in Part 1 that given a graph Laplacian $L, x^{\top} L x=$ 4 times the weight sum of the edge weights to remove in a partitioning
- An x which minimizes $x^{\top} L x$ can be approximated from eigendecomposition
- In fact, it adds a balance requirement which is required in a minimum bisection

Minimum Bisection Problem

\square The minimum bisection of an undirected graph $G=(V, E)$ is a partition of V into two groups S and \bar{S} so that the number of edges between S and \bar{S} is minimized, under the constraint that $|S|=|\bar{S}|$ (or $||S|-|\bar{S}||=1$ for odd $|V|$)

- If we let $x_{i}=\left\{\begin{array}{cl}1 & \text { if } v_{i} \in S \\ -1 & \text { if } v_{i} \in \bar{S}\end{array}\right.$ (as in minimum cut)

Then $|S|=|\bar{S}|$ implies $\sum_{i} x_{i}=0$ (or 1 or -1)

- This condition is partially ensured by the eigendecomposition

$\sum_{i} x_{i}=0$ condition

\square As in minimum cut, let $x_{i}=\left\{\begin{array}{cl}1 & \text { if } v_{i} \in S \\ -1 & \text { if } v_{i} \in \bar{S}\end{array}\right.$

- As stated in Part 1, eigenvectors of L are orthogonal
- Furthermore, the vector 1 (that is, $\forall i, x_{i}=1$) is a eigenvector (since it minimizes $x^{\top} L x$)
\Rightarrow Hence $x \perp \mathbf{1}=0$ for all eigenvectors x of L
That is, $x \perp \mathbf{1}=\left(\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right)\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)=\sum_{i} x_{i}=0$
\square We can restate minimum bisection as a constrained optimization problem

Constrained optimization problem

- Minimize $x^{\top} L x$ where $L=D-A$
subject to $x_{i} \in\{1,-1\}$ and $x^{\top} 1=0$
- The constraints $x_{i} \in\{1,-1\}$ and $x^{\top} \mathbf{1}=0$ (that is, $x \perp \mathbf{1}$) would together ensures balance in the partition
- Problem (minimum bisection) is NP-hard
- In contrast, eigendecomposition of a $|V| \times$ $|V|$ matrix takes $O\left(|V|^{3}\right)$ time

Constrained optimization problem

- Minimize $x^{\top} L x$ where $L=D-A$
subject to $x_{i} \in\{1,-1\}$ and $x^{\top} 1=0$
- Recall the exhaustive search we performed in Part 1

Constrained optimization problem

- Minimize $x^{\top} L x$ where $L=D-A$
subject to $x_{i} \in\{1,-1\}$ and $x^{\top} 1=0$
- Recall the exhaustive search we performed in Part 1

Exercise: Modify the program you wrote in Part 1 to output only balanced partitions

Group 1	Group 2	$\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{L} \boldsymbol{x}$	$\frac{\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}}$
A	B C D	12	3
B	A C D	8	2
C	A B D	8	2
U B	A B C	4	1
A C	B D	12	3
A D	B C	$\mathbf{1 2}$	3
A B C D	¢	$\mathbf{2}$	

Relaxed Rayleigh quotient version

\square Minimize $x^{\top} L x$ where $L=D-A$ subject to $x^{\top} x=1$ and $x^{\top} 1=0$

- $x^{\top} x=1$ (or any constant)
- Allows problem to be solved as minimization of $\frac{x^{\top} L x}{x^{\top} x}$
- The (standard) Rayleigh quotient is scale invariant so limiting $x^{\top} x$ to any constant does not change its value
- By the min-max theorem, λ_{k-1} is minimal among all $\frac{x^{\top} L x}{x^{\top} x}$ that are orthogonal to μ_{k}
- $x^{\top} \mathbf{1}=0$
- Automatically fulfilled by μ_{k-1}
- Balance no longer ensured

Relaxed Rayleigh quotient version

\square Eigenvalues

λ_{1}	λ_{2}	λ_{3}	λ_{4}
4.0000	3.0000	1.0000	0.0000

\square Eigenvectors

μ_{1}	μ_{2}	μ_{3}	μ_{4}
0.8660	0.0000	0.0000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

\square As expected $\mu_{4}=b \mathbf{1}(b=-0.5)$ gives the trivial solution
\square Furthermore, $\lambda_{3} \leq 2$, the optimal solution under constraint

- This is as expected since λ_{3} is minimal solution among all x orthogonal to μ_{4} but without the 1 and -1 restriction

Relaxed Rayleigh quotient version

\square Eigenvalues

λ_{1}	λ_{2}	λ_{3}	λ_{4}
4.0000	3.0000	1.0000	0.0000

\square Eigenvectors

μ_{1}	μ_{2}	μ_{3}	μ_{4}
0.8660	0.0000	0.0000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

\square Exercise: Verify that the eigenvectors $\mu_{1}, \mu_{2}, \mu_{3}$, and μ_{4} are orthogonal by showing that for each i and $j, \mu_{i} \cdot \mu_{2} \approx 0$

Introducing weights into problems
\square Unweighted (undirected) graphs

- Unbalanced version

Discussed
Cut Problem
\square Weighted (undirected) graphs

- Unbalanced version
- (Weighted) Minimum Cut Problem $O(|V||E|)$
- Balanced versions
- Ratio Cut Problem (NP-hard)
- Graph Partitioning Problem (NP-hard)

(Weighted) Minimum Cut Problem

\square Given edge weight matrix $W=\left(w_{i j}\right)$, the minimum cut of an undirected graph $G=$ (V, E) is a partition of V into two groups S and \bar{S} such that $\operatorname{cut}(S, \bar{S})=\sum_{i \in S, j \in \bar{S}} w_{i j}$ is minimized

$\operatorname{cut}(A, B)=9$

$\operatorname{cut}(A, B)=6$

(Weighted) Minimum Cut Problem

\square Given edge weight matrix $W=\left(w_{i j}\right)$, the minimum cut of an undirected graph $G=$ (V, E) is a partition of V into two groups S and \bar{S} such that $\operatorname{cut}(S, \bar{S})=\sum_{i \in S, j \in \bar{S}} w_{i j}$ is minimized

- Ford-Fulkerson 1956
- Edmonds-Karp 1972 (rediscovery of Dinitz 1970)
- Current best algorithm runs in $O(|V||E|)$ time
- No point in approximation with spectral clustering
- Mentioned here only for completeness
\square Need graph Laplacian with edge weights

Graph Laplacian with edge weights

\square To add weight to the Laplacian

- Adjacency matrix $A \Rightarrow$ weight matrix W
- Degree matrix $D \Rightarrow$ weighted degree D^{\prime}
\square Laplacian $L=D-A$ becomes $L=D^{\prime}-W$
\square Given edge weights $W=\left(w_{i j}\right)_{m \times m}$, for any vector $x \in \mathbb{R}^{m}$,

$$
x^{\top}\left(D^{\prime}-W\right) x=\frac{1}{2} \sum_{1 \leq i, j \leq m} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

(Proof same as for $x^{\top}(D-A) x=\frac{1}{2} \sum_{1 \leq i, j \leq m} a_{i j}\left(x_{i}-x_{j}\right)^{2}$)

Graph Laplacian with edge weights

\square To add weight to the Laplacian

- Adjacency matrix $A \Rightarrow$ weight matrix W
- Degree matrix $D \Rightarrow$ weighted degree D^{\prime}
- Laplacian $L=D-A$ becomes $L=D^{\prime}-W$
\square Suppose x is a vector of only the values +1 and -1. Then,

$$
\begin{aligned}
& x^{\top}\left(D^{\prime}-W\right) x=\frac{1}{2} \sum_{1 \leq i, j \leq m} w_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{1 \leq i, j \leq m} w_{i j}\left(x_{i}-x_{j}\right)^{2}=4 \sum_{1 \leq i<j \leq m, x_{i} \neq x_{j}} w_{i j} \\
& =4 \operatorname{cut}(A, B)
\end{aligned}
$$

Constrained optimization problem

\square Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x_{i} \in\{1,-1\}$

- Example of cuts with $x^{\top} L x$ and Rayleigh quotient

Group 1	Group 2	$\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}$	$\frac{\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}}$
v_{1}	$v_{2} v_{3} v_{4} v_{5} v_{6}$	32	5.333
$v_{1} v_{2} v_{3} v_{4} v_{5}$	v_{6}	40	6.667
$v_{1} v_{2}$	$v_{3} v_{4} v_{5} v_{6}$	36	6.000
$v_{1} v_{2} v_{3} v_{4}$	$v_{5} v_{6}$	64	10.667
$v_{1} v_{2} v_{3} v_{5}$	$v_{4} v_{6}$	56	9.333
$v_{1} v_{2} v_{3}$	$v_{4} v_{5} v_{6}$	24	4.000
$v_{1} v_{2} v_{4}$	$v_{3} v_{5} v_{6}$	76	12.667
\vdots	\vdots	\vdots	

- Exercise: Produce a complete list of partitions

Relaxed Rayleigh quotient version

- Minimize $x^{\top} L x$ where $L=D^{\prime}-W$ subject to $x^{\top} x=1$
- Exercise: Derive W for the graph and obtain the following eigendecomposition

\square Eigenvalues

λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}
25.73	20.49	16.14	8.46	3.18	0.00

Eigenvectors

μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	μ_{6}
-0.1081	0.2775	-0.0777	-0.5096	0.6920	-0.4082
0.4137	-0.7045	0.1720	0.2260	0.2920	-0.4082
-0.2622	0.4073	0.1308	0.7525	0.1237	-0.4082
-0.6924	-0.4100	-0.2506	-0.1448	-0.3193	-0.4082
0.4953	0.2290	-0.6521	-0.0049	-0.3321	-0.4082
0.1538	0.2008	0.6776	-0.3193	-0.4563	-0.4082

Ratio Cut Problem

- Given edge weight matrix $W=\left(w_{i j}\right)$, the minimum ratio cut of an undirected graph $G=(V, E)$ is a partition of V into two groups S and \bar{S} such that

$$
\operatorname{ratio}(S, \bar{S})=\operatorname{cut}(S, \bar{S})\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)
$$

is minimized, where $\operatorname{cut}(S, \bar{S})=\sum_{i \in S, j \in \bar{S}} w_{i j}$

- Original paper defined $\operatorname{ratio}(S, \bar{S})=\operatorname{cut}(S, \bar{S}) /|S||\bar{S}|$

$$
=\frac{1}{|V|} \operatorname{cut}(S, \bar{S})\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)
$$

Ratio Cut

$\square \quad$ Represent a partition S, \bar{S} of V with $x \in \mathbb{R}^{n}$, where

$$
x_{i}= \begin{cases}\sqrt{\frac{|S|}{|\bar{S}|}} & \text { if } i \in S \\ -\sqrt{\frac{|\bar{S}|}{|S|}} \quad \text { if } i \in \bar{S}\end{cases}
$$

Unlike earlier formulation, $\left|x_{i}\right|$ is not a constant - it changes according to the solution

- Then, $x^{\mathrm{T}} x=|S| \frac{|\bar{S}|}{|S|}+|\bar{S}| \frac{|S|}{|\bar{S}|}=|V|=$ const
- $\quad \sum_{i} x_{i}=\sum_{i \in S} \sqrt{\frac{|\bar{S}|}{|S|}}-\sum_{v_{i} \in \bar{S}} \sqrt{\frac{|S|}{|\bar{S}|}}=|S| \sqrt{\frac{|\bar{S}|}{|S|}}-|\bar{S}| \sqrt{\frac{|S|}{|\bar{S}|}}=0$
$\Rightarrow x \perp \mathbf{1}$ (in fact, it can be shown that $x \perp b \mathbf{1}$ for any b)
\square For the unnormalized weighted Laplacian $L=D^{\prime}-W$

$$
x^{\mathrm{T}} L x=|V| \operatorname{cut}(S, \bar{S})\left(\frac{1}{|S|}+\frac{1}{|\bar{S}|}\right)=|V| \operatorname{ratio}(S, \bar{S})
$$

Proof for $x^{\top} L x=|V| \operatorname{ratio}(S, \bar{S})$

$\square x^{\top} L x=\frac{1}{2} \sum_{1 \leq i, j \leq m} w_{i j}\left(x_{i}-x_{j}\right)^{2}$
$=\frac{1}{2} \sum_{i \in S, j \in \bar{S}} w_{i j}\left(\sqrt{\left.\frac{|S|}{|\bar{S}|} \right\rvert\,}+\sqrt{\frac{|\bar{S}|}{|S|}}\right)^{2}+\frac{1}{2} \sum_{i \in S, j \in \bar{S}} w_{i j}\left(-\sqrt{\left\lvert\, \frac{|S|}{|\bar{S}|}\right.}-\sqrt{\frac{|\bar{S}|}{|S|}}\right)^{2}$
$=\sum_{i \in S, j \in \bar{S}} w_{i j}\left(\frac{|S|}{|\bar{S}|}+\frac{|\bar{S}|}{|S|}+2\right)=\operatorname{cut}(S, \bar{S})\left(\frac{|S|}{|\bar{S}|}+\frac{|\bar{S}|}{|S|}+2\right)$
$=\operatorname{cut}(S, \bar{S})\left(\frac{|S|}{|\bar{S}|}+\frac{|\bar{S}|}{|S|}+\frac{|S|}{|S|}+\frac{|\bar{S}|}{|\bar{S}|}\right)$
$=\operatorname{cut}(S, \bar{S})\left(\frac{|S|+|\bar{S}|}{|\bar{S}|}+\frac{|S|+|\bar{S}|}{|S|}\right)$
$=(|S|+|\bar{S}|) \operatorname{cut}(S, \bar{S})\left(\frac{1}{|\bar{S}|}+\frac{1}{|S|}\right)=|V| \operatorname{cut}(S, \bar{S})\left(\frac{1}{|\bar{S}|}+\frac{1}{|S|}\right)$

Constrained optimization problem

\square Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x_{i} \in\{\sqrt{|S| /|\bar{S}|},-\sqrt{|S| /|\bar{S}|}\}$

- $x_{i} \in\left\{\sqrt{\left.\frac{|S|}{|S|}\right]^{\prime}}-\sqrt{\left.\left\lvert\, \frac{|S|}{|S|}\right.\right\}}\right\} \Rightarrow x^{\top} x=|V|$ and $x^{\top} \mathbf{1}=0$
- However, problem is NP-hard
- Example of cuts with $x^{\top} L x$ and Rayleigh quotient

Group 1	Group 2	$\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}$	$\frac{\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}}$
v_{1}	$v_{2} v_{3} v_{4} v_{5} v_{6}$	32	5.333
$v_{1} v_{2} v_{3} v_{4} v_{5}$	v_{6}	40	6.667
$v_{1} v_{2}$	$v_{3} v_{4} v_{5} v_{6}$	36	6.000
$v_{1} v_{2} v_{3} v_{4}$	$v_{5} v_{6}$	64	10.667
$v_{1} v_{2} v_{3} v_{5}$	$v_{4} v_{6}$	56	9.333
$v_{1} v_{2} v_{3}$	$v_{4} v_{5} v_{6}$	24	4.000
$v_{1} v_{2} v_{4}$	$v_{3} v_{5} v_{6}$	76	12.667

Relaxed Rayleigh quotient version

- Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x^{\top} x=1$ and $x^{\mathrm{T}} \mathbf{1}=0$
- Since $x^{\top} L x \neq|V| \operatorname{ratio}(S, \bar{S}) \Rightarrow$ balance no longer enforced
Eigenvalues

λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}
25.73	20.49	16.14	8.46	3.18	0.00

Eigenvectors
Eigenvectors

μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}
-0.1081	0.2775	-0.0777	-0.5096	μ_{6}
0.4137	-0.7045	0.1720	0.2260	0.2920
-0.4082				
-0.2622	0.4073	0.1308	0.7525	0.1237
-0.4082				
-0.6924	-0.4100	-0.2506	-0.1448	-0.3193
0.4953	0.2290	-0.6521	-0.0049	-0.3321
0.1538	0.2008	0.6776	-0.3193	-0.4563
	-0.4082			

$\operatorname{cut}(A, B)=6$

Relaxed Rayleigh quotient version

\square Minimize $x^{\top} L x$ where $L=D^{\prime}-W$
subject to $x^{\top} x=1$ and $x^{\mathrm{T}} 1=0$

- Since $x^{\top} L x \neq|V| \operatorname{ratio}(S, \bar{S}) \Rightarrow$ balance no longer enforced
Eigenvalues

λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}
25.73	20.49	16.14	8.46	3.18

The eigenvalue system is exactly the same as in (Weighted) Minimum Cut
\square As expected $\mu_{6}=b 1(b=-0.4082)$ provides a trivial solution
\square As expected $\lambda_{5} \leq 2.67$ since the optimal solution under constraint, since λ_{5} is minimal among all $\frac{x^{\top} L x}{x^{\top} x}$ for x orthogonal to μ_{6}

Comparison of problems

- Unweighted problem $(L=D-A)$
- Minimum Cut
- Add balance \Rightarrow Minimum Bisection
\square Weighted problems $\left(L=D^{\prime}-W\right)$
- (Weighted) Minimum Cut
- Add balance \Rightarrow Ratio Cut
- The version of the problem with $x^{\top} \mathbf{1}=0$ balance requirement can better exploit the fact that $\mu_{k-1} \perp \mu_{k}$ where $\mu_{k}=\mathbf{1}$ which helps optimality
- However note that even with $x^{\top} \mathbf{1}=0$, the balance requirement is not ensured

More constraint for balance

- So far, no attempt has been made to maintain the balance of the partition besides $x^{\top} x=1$ and $x^{\top} \mathbb{1}=0$, constraints which are provided free-of-charge by the eigenvectors of the eigenvalue system
\square Further constraints can be added to the eigenvalue system
- The Normalized Laplacian

