Spectral Clustering Part 2: Weighted Graph Laplacians Ng Yen Kaow

Recap

An intuition from the Laplacian function (in continuous space) gave us the graph
 Laplacian matrix (in graph space)

- Subsequently people found out that the graph Laplacian possesses several properties that lend it to solve graph cutting problems
 - The basic graph cutting problem is known as minimum cut in the literature

Minimum Cut Problem

- □ The minimum cut of an undirected graph G = (V, E) is a partition of *V* into two groups *S* and \overline{S} so that the number of edges between *S* and \overline{S} is minimized
 - Solvable in polynomial time $O(|E||V| + |V|^2 \log|V|)$ (Nagamochi *et al* 1992, Stoer-Wagner 1995)
- □ We saw in Part 1 that given a graph Laplacian $L, x^T L x = 4$ times the weight sum of the edge weights to remove in a partitioning
 - An x which minimizes $x^{T}Lx$ can be approximated from eigendecomposition
 - In fact, it adds a balance requirement which is required in a minimum bisection

Minimum Bisection Problem

□ The minimum bisection of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} so that the number of edges between S and \overline{S} is minimized, under the constraint that $|S| = |\overline{S}|$ (or $||S| - |\overline{S}|| = 1$ for odd |V|)

If we let
$$x_i = \begin{cases} 1 & \text{if } v_i \in S \\ -1 & \text{if } v_i \in \overline{S} \end{cases}$$
 (as in minimum cut)
Then $|S| = |\overline{S}|$ implies $\sum_i x_i = 0$ (or 1 or -1)

 This condition is partially ensured by the eigendecomposition

$\sum_{i} x_{i} = 0$ condition

- $\square \text{ As in minimum cut, let } x_i = \begin{cases} 1 & \text{if } v_i \in S \\ -1 & \text{if } v_i \in \overline{S} \end{cases}$
 - As stated in Part 1, eigenvectors of L are orthogonal
 - Furthermore, the vector **1** (that is, $\forall i, x_i = 1$) is a eigenvector (since it minimizes $x^T L x$)
 - \Rightarrow Hence $x \perp \mathbf{1} = 0$ for all eigenvectors x of L

That is,
$$x \perp \mathbf{1} = (x_1 \quad \cdots \quad x_n) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \sum_i x_i = 0$$

We can restate minimum bisection as a constrained optimization problem Constrained optimization problem \Box Minimize $x^T L x$ where L = D - A

subject to $x_i \in \{1, -1\}$ and $x^T \mathbf{1} = \mathbf{0}$

- The constraints $x_i \in \{1, -1\}$ and $x^T \mathbf{1} = 0$ (that is, $x \perp \mathbf{1}$) would together ensures balance in the partition
- Problem (minimum bisection) is NP-hard
 In contrast, eigendecomposition of a |V| × |V| matrix takes O(|V|³) time

Constrained optimization problem

 $\Box \quad \text{Minimize } x^{\top}Lx \text{ where } L = D - A$

subject to $x_i \in \{1, -1\}$ and $x^T \mathbf{1} = \mathbf{0}$

 Recall the exhaustive search we performed in Part 1

Group 1	Group 2	$x^{\top}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
А	BCD	12	3
В	ACD	8	2
C Inder the balance	A B D constraint	8	2
AB	C D	12	3
AC	ВD	12	3
A D	BC	8	2
ABCD	Ø	0	0

Constrained optimization problem

 $\Box \quad \text{Minimize } x^{\top}Lx \text{ where } L = D - A$

subject to $x_i \in \{1, -1\}$ and $x^T \mathbf{1} = \mathbf{0}$

 Recall the exhaustive search we performed in Part 1

Exercise: Modify the program you wrote in Part 1 to output only balanced partitions

Group 1	Group 2	$x^{\top}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
А	BCD	12	3
В	ACD	8	2
С	ABD	8	2
Under the balance	A B C	4	1
AB	CD	12	3
AC	ВD	12	3
A D	BC	8	2
ABCD	Ø	0	0

Relaxed Rayleigh quotient version $\square \text{ Minimize } x^{\top}Lx \text{ where } L = D - A$ subject to $x^{\top}x = 1 \text{ and } x^{\top}1 = 0$

• $x^{\top}x = 1$ (or any constant)

□ Allows problem to be solved as minimization of $\frac{x^{T}Lx}{x^{T}x}$

- The (standard) Rayleigh quotient is scale invariant so limiting $x^{T}x$ to any constant does not change its value
- By the min-max theorem, λ_{k-1} is minimal among all $\frac{x^{T}Lx}{x^{T}x}$ that are orthogonal to μ_k

• $x^{\top}\mathbf{1} = 0$

Automatically fulfilled by μ_{k-1}

Balance no longer ensured Both $\frac{[11-1-1]}{\|[11-1-1]\|}$ and $\frac{[111-3]}{\|[111-3]\|}$ fulfill the constraints

Eigenvalues

λ_1	λ_2	λ_3	λ_4
4.0000	3.0000	1.0000	0.0000

Eigenvectors

μ_1	μ_2	μ_3	μ_4
0.8660	0.0000	0.0000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

- □ As expected $\mu_4 = b\mathbf{1}$ (b = -0.5) gives the trivial solution
- □ Furthermore, $\lambda_3 \leq 2$, the optimal solution under constraint
 - This is as expected since λ_3 is minimal solution among all x orthogonal to μ_4 but without the 1 and -1 restriction

Eigenvalues

λ_1	λ_2	λ_3	λ_4
4.0000	3.0000	1.0000	0.0000

Eigenvectors

μ_1	μ_2	μ_3	μ_4
0.8660	0.0000	0.0000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

Exercise: Verify that the eigenvectors μ_1 , μ_2 , μ_3 , and μ_4 are orthogonal by showing that for each *i* and *j*, $\mu_i \cdot \mu_2 \approx 0$

Introducing weights into problems

- Unweighted (undirected) graphs
 - Unbalanced version
 - Unweightediscussed Cut Problem
 - Balanced version
 - Minimum Bisection Problem (NP-hard)
- Weighted (undirected) graphs
 - Unbalanced version
 - (Weighted) Minimum Cut Problem O(|V||E|)
 - Balanced versions
 - Ratio Cut Problem (NP-hard)
 - Graph Partitioning Problem (NP-hard)

(Weighted) Minimum Cut Problem Given edge weight matrix $W = (w_{ij})$, the minimum cut of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} such that $\operatorname{cut}(S, \overline{S}) = \sum_{i \in S, j \in \overline{S}} w_{ij}$ is minimized

(Weighted) Minimum Cut Problem Given edge weight matrix $W = (w_{ij})$, the minimum cut of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} such that $\operatorname{cut}(S, \overline{S}) = \sum_{i \in S, j \in \overline{S}} w_{ij}$ is minimized

- Ford-Fulkerson 1956
- Edmonds-Karp 1972 (rediscovery of Dinitz 1970)
- Current best algorithm runs in O(|V||E|) time
 - No point in approximation with spectral clustering
 - Mentioned here only for completeness
- Need graph Laplacian with edge weights

Graph Laplacian with edge weights

- To add weight to the Laplacian
 - Adjacency matrix $A \Rightarrow$ weight matrix W
 - Degree matrix $D \Rightarrow$ weighted degree D'
- □ Laplacian L = D A becomes L = D' W
- Given edge weights $W = (w_{ij})_{m \times m}$, for any vector $x \in \mathbb{R}^m$,

$$x^{\mathsf{T}}(D' - W)x = \frac{1}{2} \sum_{1 \le i,j \le m} w_{ij} (x_i - x_j)^2$$

(Proof same as for $x^{\top}(D-A)x = \frac{1}{2}\sum_{1 \le i,j \le m} a_{ij}(x_i - x_j)^2$)

Graph Laplacian with edge weights

- To add weight to the Laplacian
 - Adjacency matrix $A \implies$ weight matrix W
 - Degree matrix $D \Rightarrow$ weighted degree D'
- □ Laplacian L = D A becomes L = D' W
- Suppose x is a vector of only the values +1 and -1. Then,

0

$$x^{\top} (D' - W) x = \frac{1}{2} \sum_{1 \le i,j \le m} w_{ij} (x_i - x_j)^2$$

= $\frac{1}{2} \sum_{1 \le i,j \le m} w_{ij} (x_i - x_j)^2 = 4 \sum_{1 \le i < j \le m, x_i \neq x_j} w_{ij}$
= $4 \operatorname{cut}(A, B)$

Constrained optimization problem □ Minimize $x^T L x$ where L = D' - Wsubject to $x_i \in \{1, -1\}$

 \Box Example of cuts with $x^{\top}Lx$ and Rayleigh quotient

Group 1	Group 2	$x^{\top}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
v_1	$v_2v_3v_4v_5v_6$	32	5.333
$v_1 v_2 v_3 v_4 v_5$	v_6	40	6.667
$v_1 v_2$	$v_3 v_4 v_5 v_6$	36	6.000
$v_1 v_2 v_3 v_4$	$v_5 v_6$	64	10.667
$v_1 v_2 v_3 v_5$	v_4v_6	56	9.333
$v_1v_2v_3$	$v_4v_5v_6$	24	4.000
$v_1 v_2 v_4$	$v_{3}v_{5}v_{6}$	76	12.667
:		:	:

Exercise: Produce a complete list of partitions

 $\Box \quad \text{Minimize } x^{\top}Lx \text{ where } L = D' - W$

subject to $x^{\top}x = 1$

 Exercise: Derive W for the graph and obtain the following eigendecomposition

Eigenvalues

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
25.73	20.49	16.14	8.46	3.18	0.00

Eigenvectors

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
-0.1081	0.2775	-0.0777	-0.5096	0.6920	-0.4082
0.4137	-0.7045	0.1720	0.2260	0.2920	-0.4082
-0.2622	0.4073	0.1308	0.7525	0.1237	-0.4082
-0.6924	-0.4100	-0.2506	-0.1448	-0.3193	-0.4082
0.4953	0.2290	-0.6521	-0.0049	-0.3321	-0.4082
0.1538	0.2008	0.6776	-0.3193	-0.4563	-0.4082

Ratio Cut Problem

Given edge weight matrix $W = (w_{ij})$, the minimum ratio cut of an undirected graph G = (V, E) is a partition of V into two groups S and \overline{S} such that

ratio
$$(S, \overline{S}) = \operatorname{cut}(S, \overline{S}) \left(\frac{1}{|S|} + \frac{1}{|\overline{S}|} \right)$$

is minimized, where $\operatorname{cut}(S, \overline{S}) = \sum_{i \in S, j \in \overline{S}} w_{ij}$

□ Original paper defined ratio(S, \overline{S}) = cut(S, \overline{S})/ $|S||\overline{S}|$ = $\frac{1}{|V|}$ cut(S, \overline{S}) $\left(\frac{1}{|S|} + \frac{1}{|\overline{S}|}\right)$

Ratio Cut

□ Represent a partition *S*, \overline{S} of *V* with $x \in \mathbb{R}^n$, where

$$x_{i} = \begin{cases} \sqrt{\frac{|S|}{|\bar{S}|}} & \text{if } i \in S \\ -\sqrt{\frac{|\bar{S}|}{|S|}} & \text{if } i \in \bar{S} \end{cases}$$

Unlike earlier formulation, $|x_i|$ is not a constant – it changes according to the solution

Then,
$$x^{\mathrm{T}}x = |S| \frac{|\bar{S}|}{|S|} + |\bar{S}| \frac{|S|}{|\bar{S}|} = |V| = \text{const}$$

 $\sum_{i} x_{i} = \sum_{i \in S} \sqrt{\frac{|\bar{S}|}{|S|}} - \sum_{v_{i} \in \bar{S}} \sqrt{\frac{|S|}{|\bar{S}|}} = |S| \sqrt{\frac{|\bar{S}|}{|S|}} - |\bar{S}| \sqrt{\frac{|S|}{|\bar{S}|}} = 0$
 $\Rightarrow x \perp \mathbf{1}$ (in fact, it can be shown that $x \perp b\mathbf{1}$ for any b)
For the unnormalized weighted Laplacian $L = D' - W$
 $x^{\mathrm{T}}Lx = |V| \operatorname{cut}(S, \bar{S}) \left(\frac{1}{|S|} + \frac{1}{|\bar{S}|}\right) = |V| \operatorname{ratio}(S, \bar{S})$

Proof for
$$x^{T}Lx = |V| \operatorname{ratio}(S, \overline{S})$$

$$= x^{T}Lx = \frac{1}{2} \sum_{1 \le i, j \le m} w_{ij} (x_{i} - x_{j})^{2}$$

$$= \frac{1}{2} \sum_{i \in S, j \in \overline{S}} w_{ij} \left(\sqrt{\frac{|S|}{|\overline{S}|}} + \sqrt{\frac{|\overline{S}|}{|S|}} \right)^{2} + \frac{1}{2} \sum_{i \in S, j \in \overline{S}} w_{ij} \left(-\sqrt{\frac{|S|}{|\overline{S}|}} - \sqrt{\frac{|\overline{S}|}{|S|}} \right)^{2}$$

$$= \sum_{i \in S, j \in \overline{S}} w_{ij} \left(\frac{|S|}{|\overline{S}|} + \frac{|\overline{S}|}{|S|} + 2 \right) = \operatorname{cut}(S, \overline{S}) \left(\frac{|S|}{|\overline{S}|} + \frac{|\overline{S}|}{|S|} + 2 \right)$$

$$= \operatorname{cut}(S, \overline{S}) \left(\frac{|S|}{|\overline{S}|} + \frac{|\overline{S}|}{|S|} + \frac{|S|}{|S|} + \frac{|\overline{S}|}{|S|} \right)$$

$$= \operatorname{cut}(S, \overline{S}) \left(\frac{|S| + |\overline{S}|}{|\overline{S}|} + \frac{|S| + |\overline{S}|}{|S|} \right)$$

$$= (|S| + |\overline{S}|) \operatorname{cut}(S, \overline{S}) \left(\frac{1}{|\overline{S}|} + \frac{1}{|S|} \right) = |V| \operatorname{cut}(S, \overline{S}) \left(\frac{1}{|\overline{S}|} + \frac{1}{|S|} \right)$$

Constrained optimization problem

Minimize x^TLx where L = D' - W subject to x_i ∈ {√[S]/[S], -√[S]/[S]}
x_i ∈ {√[S]/[S]/[S]} ⇒ x^Tx = |V| and x^T1 = 0

However, problem is NP-hard

Example of cuts with $x^{T}Lx$ and Rayleigh quotient

Group 1	Group 2	$x^{\top}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$	v_1 8 v_2
v_1	$v_2 v_3 v_4 v_5 v_6$	32	5.333	
$v_1 v_2 v_3 v_4 v_1$	v_6	40	6.667	v_4
v_1v_2	$v_3 v_4 v_5 v_6$	36	6.000	(v_3) 7
$v_1v_2v_3v_4$	v_5v_6	64	10.667	3 n_{-}
$v_1 v_2 v_3 v_5$	v_4v_6	56	9.333	4
$v_1v_2v_3$	$v_4v_5v_6$	24	4.000	
$v_1 v_2 v_4$	$v_{3}v_{5}v_{6}$	76	12.667	$\operatorname{cut}(A,B) = 6$

 \square Minimize $x^{\top}Lx$ where L = D' - W

subject to $x^{T}x = 1$ and $x^{T}1 = 0$

Since $x^{\top}Lx \neq |V|$ ratio $(S, \overline{S}) \Rightarrow$ balance no longer enforced

Eigenvalues

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
25.73	20.49	16.14	8.46	3.18	0.00

nonvoctore

ligenvec	1015				(*	$v_1 \rightarrow v_1$
μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	v_2 3
-0.1081	0.2775	-0.0777	-0.5096	0.6920	-0.4082	6
0.4137	-0.7045	0.1720	0.2260	0.2920	-0.4082	$- v_4$
-0.2622	0.4073	0.1308	0.7525	0.1237	-0.4082	v_3 7/2
-0.6924	-0.4100	-0.2506	-0.1448	-0.3193	-0.4082	3 12-
0.4953	0.2290	-0.6521	-0.0049	-0.3321	-0.4082	4
0.1538	0.2008	0.6776	-0.3193	-0.4563	-0.4082	

 $\operatorname{cut}(A,B) = 6$

 $\mathbf{8}$

 $\Box \quad \text{Minimize } x^{\top}Lx \text{ where } L = D' - W$

subject to $x^{T}x = 1$ and $x^{T}1 = 0$

■ Since $x^{\top}Lx \neq |V|$ ratio $(S, \overline{S}) \Rightarrow$ balance no longer enforced

Eigenvalues

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
25.73	20.49	16.14	8.46	3.18	0.00

Eigenvectors

μ_1	μ_2	μ_3	μ_4	μ_5	μ_6
-0.1081	0.2775	-0.0777	-0.5096	0.6920	-0.4082
0.4137	-0.7045	0.1720	0.2260	0.2920	-0.4082
-0.2622	0.4073	0.1308	0.7525	0.1237	-0.4082
-0.6924	-0.4100	-0.2506	-0.1448	-0.3193	-0.4082
0.4953	0.2290	-0.6521	-0.0049	-0.3321	-0.4082
0.1538	0.2008	0.6776	-0.3193	-0.4563	-0.4082

The eigenvalue system is exactly the same as in (Weighted) Minimum Cut

- □ As expected $\mu_6 = b\mathbf{1}$ (b = -0.4082) provides a trivial solution
- □ As expected $\lambda_5 \le 2.67$ since the optimal solution under constraint, since λ_5 is minimal among all $\frac{x^T L x}{x^T x}$ for *x* orthogonal to μ_6

Comparison of problems

- □ Unweighted problem (L = D A)
 - Minimum Cut
 - Add balance \Rightarrow Minimum Bisection
- □ Weighted problems (L = D' W)
 - (Weighted) Minimum Cut
 - Add balance \Rightarrow Ratio Cut
- □ The version of the problem with x^T1 = 0 balance requirement can better exploit the fact that µ_{k-1} ⊥ µ_k where µ_k = 1 which helps optimality
 □ However note that even with x^T1 = 0, the balance requirement is not ensured

More constraint for balance

- □ So far, no attempt has been made to maintain the balance of the partition besides $x^T x = 1$ and $x^T 1 = 0$, constraints which are provided free-of-charge by the eigenvectors of the eigenvalue system
- Further constraints can be added to the eigenvalue system
 - The Normalized Laplacian