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Spectral Clustering
Part 1: The Graph Laplacian
Ng Yen Kaow
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

 𝛻𝛻𝑓𝑓(𝒙𝒙), the gradient at 𝑓𝑓(𝒙𝒙), is 
a vector pointing at the 
steepest ascent of 𝑓𝑓(𝒙𝒙)

 ∆𝑓𝑓, the Laplacian of 𝑓𝑓, is the divergence of 
𝛻𝛻𝑓𝑓, that is, ∆𝑓𝑓 𝒙𝒙 = 𝛻𝛻 � 𝛻𝛻𝑓𝑓 𝒙𝒙
 A scalar measurement of the smoothness 

in 𝛻𝛻𝑓𝑓 𝒙𝒙 about point 𝒙𝒙

Vector field 𝛻𝛻𝑓𝑓
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

 𝛻𝛻𝑓𝑓(𝒙𝒙), the gradient at 𝑓𝑓(𝒙𝒙), is 
a vector pointing at the 
steepest ascent of 𝑓𝑓(𝒙𝒙)

 ∆𝑓𝑓, the Laplacian of 𝑓𝑓, is the divergence of 
𝛻𝛻𝑓𝑓, that is, ∆𝑓𝑓 𝒙𝒙 = 𝛻𝛻 � 𝛻𝛻𝑓𝑓 𝒙𝒙
 A scalar measurement of the smoothness 

in 𝛻𝛻𝑓𝑓 𝒙𝒙 about point 𝒙𝒙

Vector field 𝛻𝛻𝑓𝑓
Extend the concept

(from a continuous space) 
to graphs
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

Extend the concept
(from a continuous space) 

to graphs

 𝛻𝛻𝑓𝑓(𝒙𝒙), the gradient at 𝑓𝑓(𝒙𝒙), is 
a vector pointing at the 
steepest ascent of 𝑓𝑓(𝒙𝒙)

 Consider each vertex as a point on a grid
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

 The domain of 𝑓𝑓 are vertices
 𝑓𝑓 operates on each vertex 𝑣𝑣
 Write 𝑓𝑓(𝑣𝑣) instead of 𝑓𝑓(𝑥𝑥)

 The gradient from vertex
𝑣𝑣 to 𝑣𝑣𝑣 is 𝑓𝑓 𝑣𝑣′ − 𝑓𝑓 𝑣𝑣 and is
assigned to the edge 𝑒𝑒: 𝑣𝑣 → 𝑣𝑣𝑣

𝑣𝑣

 We want a matrix that encodes all the 
gradients ⇒ The Graph Laplacian matrix
 We first construct an incidence matrix

𝑓𝑓(𝑣𝑣)

𝑓𝑓 𝑣𝑣′ − 𝑓𝑓(𝑣𝑣)

𝑣𝑣𝑣
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Incidence matrix

 Incidence matrix 𝑀𝑀

 Every column of 𝑀𝑀 represents an edge

𝑀𝑀⊤
1𝑓𝑓 = 1 −1 0 0

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3
𝑓𝑓 𝑣𝑣4

= 𝑓𝑓 𝑣𝑣1 − 𝑓𝑓 𝑣𝑣2 = 𝑤𝑤 𝑒𝑒1
column 1 of 𝑀𝑀

1 −1 1 −1
−1 1 0 0

0 0 1 −1
1 −1 0 0

0 0 −1 1
0 0 0 0

−1 1 0 0
0 0 −1 1

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6 𝑒𝑒7 𝑒𝑒8
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4

𝑀𝑀 =

Let vector 𝑓𝑓 =

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3
𝑓𝑓 𝑣𝑣4

def
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Incidence matrix

 Incidence matrix 𝑀𝑀

 Every column of 𝑀𝑀 represents an edge

1 −1 1 −1
−1 1 0 0

0 0 1 −1
1 −1 0 0

0 0 −1 1
0 0 0 0

−1 1 0 0
0 0 −1 1

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6 𝑒𝑒7 𝑒𝑒8
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4

𝑀𝑀 =

Let vector 𝑓𝑓 =

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3
𝑓𝑓 𝑣𝑣4

𝑀𝑀⊤ 𝑓𝑓 =

𝑤𝑤(𝑒𝑒1)
𝑤𝑤(𝑒𝑒2)
⋮

𝑤𝑤(𝑒𝑒8)  𝑀𝑀⊤𝑓𝑓 encodes all the edges
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The graph Laplacian 𝐿𝐿
 The graph Laplacian 𝐿𝐿 is obtained by

∆𝑓𝑓 = 𝛻𝛻 � 𝛻𝛻𝑓𝑓 = 𝑀𝑀𝑀𝑀⊤𝑓𝑓
 𝑀𝑀𝑀𝑀⊤𝑓𝑓 is a vector of length 𝑉𝑉 where each 

element is the divergence of a vertex

 e.g.

 𝑀𝑀𝑀𝑀⊤ is a 𝑉𝑉 × 𝑉𝑉 matrix

𝑀𝑀𝑀𝑀⊤𝑓𝑓 1 = 1 −1 1 −1 0 0 1 −1

𝑤𝑤(𝑒𝑒1)
𝑤𝑤(𝑒𝑒2)
𝑤𝑤(𝑒𝑒3)
𝑤𝑤(𝑒𝑒4)
𝑤𝑤(𝑒𝑒5)
𝑤𝑤(𝑒𝑒6)
𝑤𝑤(𝑒𝑒7)
𝑤𝑤(𝑒𝑒8)

= 𝑤𝑤 𝑒𝑒1 − 𝑤𝑤 𝑒𝑒2 + 𝑤𝑤(𝑒𝑒3) − 𝑤𝑤 𝑒𝑒4 + 𝑤𝑤(𝑒𝑒7) − 𝑤𝑤 𝑒𝑒8

divergence of vertex 𝑣𝑣1

𝑀𝑀𝑀𝑀⊤
𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
⋮

=
∆𝑓𝑓(𝑣𝑣1)
∆𝑓𝑓(𝑣𝑣2)

⋮
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The graph Laplacian 𝐿𝐿

 Output

 𝑀𝑀𝑀𝑀⊤ is a 𝑉𝑉 × 𝑉𝑉 matrix

import numpy as np

M = np.array([[ 1,-1, 1,-1, 0, 0, 1,-1],
[-1, 1, 0, 0, 1,-1, 0, 0],
[ 0, 0,-1, 1,-1, 1, 0, 0],
[ 0, 0, 0, 0, 0, 0,-1, 1]])

# Compute MM^T
M @ M.transpose()

array([[ 6, -2, -2, -2],
[-2,  4, -2,  0],
[-2, -2,  4,  0],
[-2,  0,  0,  2]])

There will be a lot of hands-on 
so please try this

on your own computer now



© 2021. Ng Yen Kaow

Properties of 𝐿𝐿
 The graph Laplacian 𝐿𝐿 is obtained as 𝐿𝐿 = 𝑀𝑀𝑀𝑀⊤

1. For an undirected graph, 𝐿𝐿 can be computed as 
𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴 from the degree matrix 𝐷𝐷 and the 
adjacency matrix 𝐴𝐴
 That is, 𝑀𝑀𝑀𝑀⊤ = 𝐷𝐷 − 𝐴𝐴

2. For an undirected graph, 𝐿𝐿 is symmetric (and in 
fact, positive semidefinite)
 This allows us to obtain a real orthogonal 

eigenbasis with real eigenvalues
 The eigenbasis has topological significance but we will save this 

discussion for Part 3

3. 𝐿𝐿 has a mathematical interpretation which will 
allow us to make use of the eigenbasis
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Property 1: 𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴
 The undirected incidence matrix 𝑀𝑀 of earlier 

graph

 Observe that for the undirected case, we let the second non-zero 
value that appear in every column be −1

 Adjacency matrix of the graph, 𝐴𝐴 =

 𝐴𝐴 is easier to construct than 𝑀𝑀 (no need to name the edges and 
no messy −1 values)

1 1
−1 0

0 1
1 0

0 −1
0 0

−1 0
0 −1

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4

𝑀𝑀 =

0 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4
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Property 1: 𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴
 Run the following to verify that 𝐿𝐿 = 𝑀𝑀𝑀𝑀⊤ = 𝐷𝐷 − 𝐴𝐴

import numpy as np

M = np.array([[ 1, 1, 0, 1],
[-1, 0, 1, 0],
[ 0,-1,-1, 0],
[ 0, 0, 0,-1]])

# Compute MM^T
L = M @ M.transpose()

L

import numpy as np

A = np.array([[0, 1, 1, 1],
[1, 0, 1, 0],
[1, 1, 0, 0],
[1, 0, 0, 0]])

D = np.diag(A.sum(axis=0))

L=D-A
L

𝐷𝐷 − 𝐴𝐴𝑀𝑀𝑀𝑀⊤
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Property 2: Eigenbasis
 A eigenvector for a square matrix 𝐿𝐿 is a 

vector 𝑢𝑢 where
𝐿𝐿𝑢𝑢 = 𝜆𝜆𝑢𝑢

 𝑢𝑢 is invariant under transformation 𝐿𝐿
 The scaling factor 𝜆𝜆 is a eigenvalue

 Each 𝐿𝐿 has a unique set of eigenvalues
 For real symmetric 𝐿𝐿
 The eigenvalues are real
 A set of real and orthogonal

eigenvectors that correspond to distinct 
eigenvalues can be computed
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Property 2: Eigenbasis
 Let 𝜆𝜆1,…, 𝜆𝜆𝑛𝑛 where 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ … ≥ 𝜆𝜆𝑛𝑛 be 

the eigenvalues of 𝐿𝐿 and define the 
Rayleigh quotient 𝑥𝑥

⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

for arbitrary vector 𝑥𝑥
 Min-max Theorem
 Maximum of the Rayleigh quotient, 

max
𝑥𝑥 =1

𝑥𝑥⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆1

 Minimum of the Rayleigh quotient, 

min
𝑥𝑥 =1

𝑥𝑥⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆𝑛𝑛
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Let the adjacency matrix 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖

 Consider partitioning graph into 2 parts, 𝑆𝑆 and ̅𝑆𝑆

𝑎𝑎13

𝑎𝑎12
𝑎𝑎23

𝑎𝑎14
𝐴𝐴 =

0 𝑎𝑎12
𝑎𝑎12 0

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 0

𝑎𝑎13 𝑎𝑎23
𝑎𝑎14 0

0 0
0 0

𝑎𝑎13

𝑎𝑎12 𝑎𝑎23

 If 𝑆𝑆 = 𝑣𝑣1,𝑣𝑣2,𝑣𝑣4 , then 
we need to remove the 
two edges which sum 
to 𝑎𝑎13 + 𝑎𝑎23

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣4

𝑎𝑎14
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Let the adjacency matrix 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖

 Consider partitioning graph into 2 parts, 𝑆𝑆 and ̅𝑆𝑆

𝑎𝑎13

𝑎𝑎12
𝑎𝑎23

𝑎𝑎14
𝐴𝐴 =

0 𝑎𝑎12
𝑎𝑎12 0

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 0

𝑎𝑎13 𝑎𝑎23
𝑎𝑎14 0

0 0
0 0

𝑎𝑎13

𝑎𝑎12 𝑎𝑎23

 If 𝑆𝑆 = 𝑣𝑣1,𝑣𝑣3,𝑣𝑣4 , 
then the sum of the 
edges to be removed 
is 𝑎𝑎12 + 𝑎𝑎23

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣4

𝑎𝑎14
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Let the adjacency matrix 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖

 Consider partitioning graph into 2 parts, 𝑆𝑆 and ̅𝑆𝑆
 The Laplacian 𝐿𝐿 can be related to the sum of 

the edges to remove

𝑎𝑎13

𝑎𝑎12
𝑎𝑎23

𝑎𝑎14
𝐴𝐴 =

0 𝑎𝑎12
𝑎𝑎12 0

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 0

𝑎𝑎13 𝑎𝑎23
𝑎𝑎14 0

0 0
0 0
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 We first note that

𝑥𝑥⊤𝐿𝐿𝑥𝑥 =
1
2�𝑖𝑖,𝑖𝑖=1

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2

𝑥𝑥⊤𝐿𝐿𝑥𝑥 = 𝑥𝑥⊤𝐷𝐷𝑥𝑥 − 𝑥𝑥⊤𝐴𝐴𝑥𝑥 = �
𝑖𝑖=1

𝑚𝑚

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖2 − �
𝑖𝑖,𝑖𝑖=1

𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

=
1
2

�
𝑖𝑖=1

𝑚𝑚

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖2 − 2 �
𝑖𝑖,𝑖𝑖=1

𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 + �
𝑖𝑖=1

𝑚𝑚

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖2

=
1
2
�

𝑖𝑖,𝑖𝑖=1

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2

Hall. An r-dimensional quadratic placement algorithm, 1970
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Then

𝑥𝑥⊤𝐿𝐿𝑥𝑥 =
1
2�𝑖𝑖,𝑖𝑖=1

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2

=
1
2�𝑖𝑖,𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2

= �
𝑖𝑖,𝑖𝑖=1,𝑖𝑖<𝑖𝑖

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Furthermore

𝑥𝑥⊤𝐿𝐿𝑥𝑥 = �
𝑖𝑖,𝑖𝑖=1,𝑖𝑖<𝑖𝑖

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2

 Suppose 𝑥𝑥 is a vector of only the 
values +1 and -1, indicating the 
membership of the vertices in a set 𝑆𝑆

𝑥𝑥𝑖𝑖 = � 1 if 𝑣𝑣𝑖𝑖 ∈ 𝑆𝑆
−1 if 𝑣𝑣𝑖𝑖 ∉ 𝑆𝑆

This way 𝑥𝑥 can indicate the result of 
a 2-partition, 𝑆𝑆 and ̅𝑆𝑆

If 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2 = 0

If 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2 = 4
i.e. −1 − 1 2 or 1 − (−1) 2 = 4
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Finally

 Hence 𝑥𝑥⊤𝐿𝐿𝑥𝑥 is 4 times the number of edges 
between the adjacent vertices from 𝑆𝑆 and ̅𝑆𝑆

= 4�
1≤𝑖𝑖<𝑖𝑖≤𝑚𝑚,𝑥𝑥𝑖𝑖≠𝑥𝑥𝑗𝑗

𝑎𝑎𝑖𝑖𝑖𝑖

𝑥𝑥⊤𝐿𝐿𝑥𝑥 = �
𝑖𝑖,𝑖𝑖=1,𝑖𝑖<𝑖𝑖

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2
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Finding 𝑥𝑥 that minimizes 𝑥𝑥⊤𝐿𝐿𝑥𝑥
 Compute 𝑥𝑥⊤𝐿𝐿𝑥𝑥

 e.g. 

 when 𝑥𝑥 = 1 − 1 − 1 − 1 , 𝑥𝑥⊤𝐿𝐿𝑥𝑥 = 12

𝐿𝐿 =
3 −1

−1 2
−1 −1
−1 0

−1 −1
−1 0

2 0
0 1

𝑥𝑥⊤𝐿𝐿𝑥𝑥 = 1 −1 −1 −1

3 −1
−1 2

−1 −1
−1 0

−1 −1
−1 0

2 0
0 1

1
−1
−1
−1

= 12

1

1 1
1

𝐴𝐴 =
0 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

x = np.array([1, -1, -1, -1])
x @ L @ x
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Finding 𝑥𝑥 that minimizes 𝑥𝑥⊤𝐿𝐿𝑥𝑥
 Exercise: Compute 𝑥𝑥⊤𝐿𝐿𝑥𝑥 for all 𝑥𝑥

 Sample output
['v1' 'v2' 'v3' 'v4'] [] 0
['v1' 'v2' 'v3'] ['v4'] 4
['v1' 'v2' 'v4'] ['v3'] 8
['v1' 'v2'] ['v3' 'v4'] 12
['v1' 'v3' 'v4'] ['v2'] 8
['v1' 'v3'] ['v2' 'v4'] 12
['v1' 'v4'] ['v2' 'v3'] 8
['v1'] ['v2' 'v3' 'v4'] 12
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Finding 𝑥𝑥 that minimizes 𝑥𝑥⊤𝐿𝐿𝑥𝑥
 𝑥𝑥⊤𝐿𝐿𝑥𝑥 = 0 when 𝑥𝑥 = 𝟏𝟏 =

1 1 1 1 (or 𝑥𝑥 = −𝟏𝟏 =
−1 −1 −1 −1 )

 We do not want this 
solution

 Use 𝑥𝑥⊤𝐿𝐿𝑥𝑥 = 4 instead 

Group 1 Group 2 𝑥𝑥⊤𝐿𝐿𝑥𝑥

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12

𝑣𝑣2 𝑣𝑣1 𝑣𝑣3 𝑣𝑣4 8

𝑣𝑣3 𝑣𝑣1 𝑣𝑣2 𝑣𝑣4 8

𝑣𝑣4 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 4

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12

𝑣𝑣1 𝑣𝑣3 𝑣𝑣2 𝑣𝑣4 12

𝑣𝑣1 𝑣𝑣4 𝑣𝑣2 𝑣𝑣3 8

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 ∅ 0

 Next we compute the 𝑥𝑥
⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

values from these
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Finding 𝑥𝑥 that minimizes ⁄𝑥𝑥⊤𝐿𝐿𝑥𝑥 𝑥𝑥⊤𝑥𝑥
 Complete list of 𝑥𝑥

⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

values
(𝑥𝑥 is of only +1 and -1 ⇒ 𝑥𝑥⊤𝑥𝑥 = 𝑥𝑥 = 4)

 Optimal 𝑥𝑥
⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

= 1, when 𝑥𝑥 = 1 1 1 −1 or −1 −1 −1 1

 This optimal 𝒙𝒙 can be approximately obtained…

Group 1 Group 2 𝒙𝒙⊤𝑳𝑳𝒙𝒙 𝒙𝒙⊤𝑳𝑳𝒙𝒙
𝒙𝒙⊤𝒙𝒙

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12 3
𝑣𝑣2 𝑣𝑣1 𝑣𝑣3 𝑣𝑣4 8 2
𝑣𝑣3 𝑣𝑣1 𝑣𝑣2 𝑣𝑣4 8 2
𝑣𝑣4 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 4 1

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12 3
𝑣𝑣1 𝑣𝑣3 𝑣𝑣2 𝑣𝑣4 12 3
𝑣𝑣1 𝑣𝑣4 𝑣𝑣2 𝑣𝑣3 8 2
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Finding 𝑥𝑥 that minimizes ⁄𝑥𝑥⊤𝐿𝐿𝑥𝑥 𝑥𝑥⊤𝑥𝑥
 Let 𝜆𝜆1,…, 𝜆𝜆𝑘𝑘 where 𝜆𝜆1 ≥ … ≥ 𝜆𝜆𝑘𝑘 be the 

eigenvalues of 𝐿𝐿, and 𝜇𝜇1,…, 𝜇𝜇𝑘𝑘 the respective 
eigenvectors
 By the min-max theorem of Rayleigh quotient,

min
𝑥𝑥

𝑥𝑥⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆𝑘𝑘

# Find the eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(L)

# Sort eigenvalues in decreasing order
idx = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[idx]
eigenvectors = eigenvectors[:,idx]
eigenvalues

array([4.000000e+00, 3.000000e+00, 1.000000e+00, 1.110223e-16])
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Eigendecomposition example
 Eigenvalues

 Eigenvectors

 𝜆𝜆3 = 1 = optimal value for 1
2
∑1≤𝑖𝑖,𝑖𝑖≤𝑚𝑚 𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2

 If group by the (±) sign, 𝜇𝜇3 correctly places 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 in 
one group (−) and 𝑣𝑣4 in another (+)

𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4
0.8660 0.0000 0.0000 -0.5000

-0.2887 0.7071 -0.4082 -0.5000

-0.2887 -0.7071 -0.4082 -0.5000

-0.2887 0.0000 0.8165 -0.5000

𝜆𝜆1 𝜆𝜆2 𝜆𝜆3 𝜆𝜆4
4.0000 3.0000 1.0000 0.0000

Trivial solution (no partition)

More precisely, -9.51E-17
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Compromise in +1/-1 restriction
 By relaxing the restriction of +1 and -1 in 𝑥𝑥 to 

allow any real number, an 𝑥𝑥⊤𝐿𝐿𝑥𝑥 smaller than the 
optimal under the restriction is often achieved

 The improvement can be guaranteed if 𝑥𝑥 is 
orthogonal to 𝟏𝟏 (or −𝟏𝟏) since by the min-max 
theorem, 𝜇𝜇𝑘𝑘−1

⊤𝐿𝐿𝜇𝜇𝑘𝑘−1
𝜇𝜇𝑘𝑘−1⊤𝜇𝜇𝑘𝑘−1

is minimal among all 𝑥𝑥
⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

that are orthogonal to 𝜇𝜇𝑘𝑘
 However, in the present case, 𝑥𝑥 = [1 1 1 −1] and 

not orthogonal to 𝜇𝜇4 = 1 1 1 1

 Still, 𝜇𝜇3
⊤𝐿𝐿𝜇𝜇3

𝜇𝜇3⊤𝜇𝜇3
= 𝜆𝜆3 = 1 = min

𝒙𝒙∈{1,−1}𝟒𝟒
𝑥𝑥⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

 Though no guarantee, improvements are usual
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Historical use of 𝜇𝜇𝑘𝑘−1
 Historically 𝜇𝜇𝑘𝑘−1 received more 

attention than the other eigenvectors
 (Shi and Malik, 2000) started using multiple 

eigenvectors for clustering (see Part 3)

 𝜇𝜇𝑘𝑘−1 is called the Fiedler vector
 𝜆𝜆𝑘𝑘−1 is called the Fiedler value
 The multiplicity of 𝜆𝜆𝑘𝑘−1 is always 1
 Also called the algebraic connectivity

 The further 𝜆𝜆𝑘𝑘−1 is from 0, the more highly 
connected is the graph (hard to separate)
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Recap
 An intuition from the Laplacian function (in 

continuous space) gave us the graph 
Laplacian matrix (in graph space)

 Subsequently people found out that the 
graph Laplacian possesses several 
properties that lend it to solve graph cutting 
problems
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