Spectral Clustering
Part 1: The Graph Laplacian
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Laplacian of a function
0 Given a multivariate function f: R" - R

0 Vf(x), the gradient at f(x), Is 33333::;:12’2
a vector pointing at the NN
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steepest ascent of f(x) VAR
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Vector field V'f

0 Af, the Laplacian of f, Is the divergence of
Vf, thatis, Af(x) =V -Vf(x)

A scalar measurement of the smoothness
in Vf(x) about point x
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Laplacian of a function
0 Given a multivariate function f: R" - R
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Extend the concept
(from a continuous space)
to graphs
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Vector field V'f

Ivergence of

Vf, that -VF(x)

A scalar measurement of the smoothness
in Vf(x) about point x
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Laplacian of a function
0 Given a multivariate function f: R" - R

0 Vf(x), the gradient at f(x), IS
a vector pointing at the

steepest ascent of f(x)

Extend the concept
(from a continuous space)
to graphs

0 Consider each vertex as a point on a grid



Laplacian of a function

0 Given a multivariate function f: R" - R
)

0 The domain of f are vertices
0 f operates on each vertex v } Q=)
Write f(v) instead of f(x)

0 The gradient from vertex CS‘—Q“

vtov'is f(v') — f(v) and is
assigned to the edge e: v —» v/

0 We want a matrix that encodes all the
gradients = The Graph Laplacian matrix

We first construct an Incidence matrix



Incidence matrix

fw1) es: vy — Vs f(ws)
€4:V3 2 Vq

€g: V3 = Uy f ()
Let vector f =
I =Fws)
| f(vy).
- - 31 32 93 94 95 86 67 68
0 Incidence matrix M it a2 1 o4 oo 1 1
M="%v-11 00 1 -1 00
V3 0 0 -1 1 -1 1 O O
|0 0 0 O 0 0 -1 1

0 Every column of M represents an edge

f (v1)]
(Mf =11 =1 0 o[k = Fw) - £ £ weep
©2021.NgYen§(a)cl)l;len10fM -f(v4)-



Incidence matrix

fw1) es: vy — Vs f(ws)
€4:V3 2 Vq

€g: V3 = Uy f ()
Let vector f =
I =Fws)
| f(vy).
- - el 32 93 94 95 86 67 68
0 Incidence matrix M it a2 1 o4 oo 1 1
M="%v-11 00 1 -1 00
V3 0 0 -1 1 -1 1 O O
|0 0 0 O 0 0 -1 1

0 Every column of M represents an edge

‘w(er)
MT f= W(QZ)

_W(:QS)_ M f encodes all the edges
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The graph Laplacian L

0 The graph Laplacian L is obtained by
Af =V -Vf=MM'f
MM f is a vector of length |V | where each
element is the divergence of a vertex

MM |f(v,)

0o e.g.

MMTf);=[1 -1 1 -1 0 0 1 -1]

f(%)]

‘w(er)]

w(ez)
w(es)
w(ey)
w(es)
w(eg)
w(ey)

lw(eg)

Af (vl)
[Af (v2)

= \W(el) —w(ey) + w(ez) —wl(ey) +w(ey) — W(es)l

Y
divergence of vertex v,

MMT is a |V]| x [V| matrix
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The graph Laplacian L

import numpy as np

M = np.array([

[ 1,
[-1,
[ O,
[ O,

# Compute MMAT
M @ M.transpose()

0 Qutput 7 ™
ey 2 2 2 There will be a lot of hands-on
-2, -2, 4, 0], S0 please try this

[
[-2, 0, 0. 2ID on your own computer now

N /

= MMTis a|V| x |V] matrix
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Properties of L

0 The graph Laplacian L is obtained as L = MMT

1. For an undirected graph, L can be computed as
L = D — A from the degree matrix D and the
adjacency matrix A

Thatis, MM" =D — A
2. For an undirected graph, L is symmetric

This allows us to obtain a real orthogonal
eigenbasis with real eigenvalues

The eigenbasis has topological significance but we will save this
discussion for Part 3

3. L has a mathematical interpretation which will
allow us to make use of the eigenbasis
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Property 1: L=D — A

0 The undirected incidence matrix M of earlier
graph

Observe that for the undirected case, we let the second non-zero
value that appear in every column be —1

Vi Vy Vg Ty

mfo 1 1 1

. . %) 1 0 1 O

0 Adjacency matrix of the graph, A= 2 [{ 1 o o
vaf1 0 0 0

A Is easier to construct than M (no need to name the edges and
no messy —1 values)
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Property 1: L=D — A

o Run the following to verify that L = MMT =D — A

D—-A

Import numpy as np Import numpy as np

A = np.array([[O, 1, 1, 1],
[1, 0, 1, O],
[1, 1, 0, O],
[1, 0, O, 01D

M = np.array([

[
[-
[
[

# Compute MMAT
L =M@ M.transpose()

np.diag(A.sum(axis=0))

L
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Property 2: Eigenbasis

0 A eigenvector for a square matrix L IS a
vector u where
Lu = Au

u IS Invariant under transformation L

The scaling factor A Is a eigenvalue
o Each L has a unique set of eigenvalues

0 For real symmetric L
The eigenvalues are real

A set of real and orthogonal
eigenvectors that correspond to distinct
eigenvalues can be computed
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Property 2: Eigenbasis

0 LetAy,..., 4, where A, =2 4, > ... =2 4,, be
the eigenvalues of L and define the

x T Lx

xTx

0 Min-max Theorem

Maximum of the Rayleigh quotient,

Rayleigh guotient for arbitrary vector x

x " Lx )
=1 xTx !
Minimum of the Rayleigh guotient,
- x'Lx
min = A,

Ixll=1 xTx
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Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

o Let the adjacency matrix A = (a;;)

0 ayp, Q13 Qg4

If S = {v,,v,,v,}, then
we need to remove the
two edges which sum
to a3 + a,;
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Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

o Let the adjacency matrix A = (a;;)

0 ayp, Q13 Qg4

If S = {v1,v3, 04},
then the sum of the
edges to be removed
IS a{, + ay;
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Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

o Let the adjacency matrix A = (a;;)

0 ayp, Q13 Qg4
A=|mz 0 @z O
a13 Ad23 0 0
a4 O 0 O |

o Consider partitioning graph into 2 parts, S and S

The Laplacian L can be related to the sum of
the edges to remove
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Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

0 We first note that

1™ 2
XTLX = —Z aij(xi — X])
2 Laijj=1

m
TLx—xTDx—xTAx—de — Z ;XX
=1 [,j=1
de —ZZaUxx]+de
i,j=1
2
P ICE

©2021. Ng Yen Kaow Hall. An r-dimensional quadratic placement algorithm, 1970



Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

0 Then

1 m
XTLX = —Z aij(xi — X])z
2 Laijj=1
22 al](xl o x])
L,j=1,i+]j
:2. o al](xl—x])
[,j=1,i<j
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Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

0 Furthermore

m 2
x"Lx = 2 a;;i (% — x;)

i,j=1,i<j
: |f Xi = Xj
0 Suppose x Is a vector of only the )
values +1 and -1, indicating the (xi—x%) =0
membership of the vertices in aset S
x—{l ifv, €S |fxi¢Xj
LTl-1 ifv ¢S 2
ifv; ¢ (Xi—Xj) = 4

This way x can indicate the result of
a 2-partition, S and S

e.(—1—-1)2or(1—-(-1))?=4
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Property 3: Mathematical property

0 A precise mathematical property of L relates it to
“sparsest cut” problems

0 Finally

m 2
x"Lx = 2 a;;i (% — x;)

ij=1,i<j

= 4 E aij
1si<jsm,xi¢xj

0 Hence x'"Lx is 4 times the number of edges
between the adjacent vertices from S and S
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Finding x that minimizes x " Lx

o Compute x " Lx

= e.q. 0 1 1 1]
4-[1 0 10
1 10 0
1 0 0 0
(3 -1 -1 -1
_|-1 2 -1 o0
L=1-1 -1 2 o0
-1 0 0 1

= whenx=[1-1-1—-1],x"Lx =12

3 -1 -1 -1][ 1
xTlx=[1 -1 -1 -1]|~} 2 =1 0ff=11_- 1

-1 -1 2 0]]|-1
-1 0 0 111-1

X = np.array([1, -1, -1, -1

X @ L @ X
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Finding x that minimizes x " Lx

0 Exercise: Compute x " Lx for all x

0 Sample output

[Tvl® "v2® "v3" *"v4"] [] O
[Tvl® "v2® "v3"] ["v4"] 4
[Tvl® "v2" "v4"] ["v3"] 8
[Tvl® "v2"] ["v3" "v4"] 12
[Tvl® "v3" "v4"] ["v2"] 8
["vl® "v3"] ["v2" "v4"] 12
[vl® "v4"] ["v2" "v3"] 8
["vl®] ["v2" "v3" "v4"] 12
©2021. Ng Yen Kaow



Finding x that minimizes x " Lx

0 x'Lx=0whenx=1= Groupl Group2 xTLx
[[_11 }11_}11(]? == 121 Uy U3 Uy 12
We do not want this V2  V1V3ly 8
solution Vs vy Uy U, 8
Use x'Lx = 4 instead Ve vy Uy Vs 4
vy Uy VU3 Uy 12
Z Z Uy VU3 Uy Uy 12
@ | V1 Uy Uy V3 8
@ V1 Uy U3 Uy 1) 0

xTLx

0 Next we compute the

©2021. Ng Yen Kaow

xTx

values from these



Finding x that minimizes x"Lx/x"x

: xTLx
0 Complete list of —— values

(xisofonly +1and -1 = xTx = |x| = 4)

Group 1 Group 2 x"Lx x'Lx
x'x
(2] Vy U3 Uy 12 3
U, V1 V3 Uy 8 2
V3 UV Uy Uy 8 2
Uy V1 Uy VU3 4 1
(27 V3 Uy 12 3
vy U3 Uy Uy 12 3
Vq Uy v, Vs 8 2
o Optimal <L _ 1 when x = 1 1 1 —1]or[-1 -1 -1 1]

xTx

0 This optimal x can be approximately obtained...
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Finding x that minimizes x "Lx/x"x

0 LetAq,..., A, Where 4, = ... = 4, be the
eigenvalues of L, and u4,..., u; the respective
eigenvectors

= By the min-max theorem of Rayleigh quotient,

- x'Lx ,
min =
x x'x .

# Find the eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(L)

# Sort eigenvalues 1In decreasing order
1dx = ei1genvalues.argsort(Q[::-1]
eigenvalues = eigenvalues|i1dx]
eigenvectors = eilgenvectors|:, 1dx]
eigenvalues

array([4.000000e+00, 3.000000e+00, 1.000000e+00, 1.110223e-16])
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Eigendecomposition example

0 Eigenvalues

M Az A3 Ay
4.0000 3.0000 1.0000 0.0000

Trivial solution (no partition)

O] Eigenvectors More precisely, -9.51E-17 W
N H3

H1 U2 Ha
0.8660 0.0000 0.0000 -0.5000
-0.2887 0.7071 -0.4082 -0.5000
-0.2887 -0.7071 -0.4082 -0.5000
-0.2887 0.0000 0.8165 -0.5000

. 1 2
0 A3 = 1 = optimal value for Ezlsi,]’Sm aij(xi — Xj)

o If group by the (+) sign, u; correctly places vy, v,, v;3 In
one group (—) and v, in another (+)
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Compromise In +1/-1 restriction

0 By relaxing the restriction of +1 and -1 in x to
allow any real number, an x " Lx smaller than the
optimal under the restriction Is often achieved

The improvement can be guaranteed If x IS

orthogonal to 1 (or —1) since by the min-max

1 Lpg—q - .. x T Lx
theorem, =1 241 is minimal among all =
Hk-1 Hk-1 x'x

that are orthogonal to

o However, in the present case, x =[111—1] and
not orthogonalto u, = [111 1]

T T
- L . X' Lx

o Still, 2= =1;=1= min =
H3 U3 xe{1,-1}* X' X

o Though no guarantee, improvements are usual
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Historical use of u;_4

Historically u;_, received more
attention than the other eigenvectors

(Shi and Malik, 2000) started using multiple
eigenvectors for clustering (see Part 3)

u,_4 Is called the Fiedler vector

A._4 1S called the Fiedler value
The multiplicity of A,_; Is always 1
Also called the algebraic connectivity

o The further A1,_; Is from O, the more highly
connected Is the graph (hard to separate)
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Recap

o An intuition from the Laplacian function (in
continuous space) gave us the graph
Laplacian matrix (in graph space)

1 Subsequently people found out that the
graph Laplacian possesses several
properties that lend it to solve graph cutting
problems
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