Spectral Clustering Part 1: The Graph Laplacian
 Ng Yen Kaow

Laplacian of a function

\square Given a multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\square \nabla f(\boldsymbol{x})$, the gradient at $f(\boldsymbol{x})$, is a vector pointing at the steepest ascent of $f(\boldsymbol{x})$
$\square \Delta f$, the Laplacian of f, is the divergence of ∇f, that is, $\Delta f(\boldsymbol{x})=\nabla \cdot \nabla f(\boldsymbol{x})$
$■$ A scalar measurement of the smoothness in $\nabla f(x)$ about point \boldsymbol{x}

Laplacian of a function

\square Given a multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\square \nabla f(x)$, the gradient at $f(\boldsymbol{x})$, is a vector pointing at the steepest ascent of $f(\boldsymbol{x})$

Extend the concept (from a continuous space) to graphs divergence of
∇f, that is, $\Delta f(x)=\nabla \cdot \nabla f(x)$

- A scalar measurement of the smoothness in $\nabla f(x)$ about point \boldsymbol{x}

Laplacian of a function

\square Given a multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\square \nabla f(\boldsymbol{x})$, the gradient at $f(\boldsymbol{x})$, is a vector pointing at the steepest ascent of $f(\boldsymbol{x})$

Extend the concept (from a continuous space) to graphs
\square Consider each vertex as a point on a grid

Laplacian of a function

\square Given a multivariate function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
\square The domain of f are vertices
$\square f$ operates on each vertex v - Write $f(v)$ instead of $f(x)$
\square The gradient from vertex v to v^{\prime} is $f\left(v^{\prime}\right)-f(v)$ and is
 assigned to the edge $e: v \rightarrow v^{\prime}$
\square We want a matrix that encodes all the gradients \Rightarrow The Graph Laplacian matrix - We first construct an incidence matrix

Incidence matrix

Let vector $f=\left[\begin{array}{l}f\left(v_{1}\right) \\ f\left(v_{2}\right) \\ f\left(v_{3}\right) \\ f\left(v_{4}\right)\end{array}\right]$
\square Incidence matrix M

$$
M=\begin{gathered}
e_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left[\begin{array}{cccccccc}
1 & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} & e_{8} \\
-1 & 1 & 1 & -1 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

\square Every column of M represents an edge

$$
\left.\begin{array}{l}
\left(M^{\top}\right)_{1} f=\left[\begin{array}{llll}
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
f\left(v_{1}\right) \\
f\left(v_{2}\right) \\
\text { column } 1 \text { of } M
\end{array}\right. \\
f\left(v_{3}\right) \\
f\left(v_{4}\right)
\end{array}\right]=f\left(v_{1}\right)-f\left(v_{2}\right) \stackrel{\text { def }}{=} w\left(e_{1}\right)
$$

Incidence matrix

Let vector $f=\left[\begin{array}{l}f\left(v_{1}\right) \\ f\left(v_{2}\right) \\ f\left(v_{3}\right) \\ f\left(v_{4}\right)\end{array}\right]$
\square Incidence matrix M

$$
M=\begin{gathered}
e_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left[\begin{array}{cccccccc}
1 & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} & e_{8} \\
-1 & 1 & 1 & -1 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

\square Every column of M represents an edge

$$
M^{\top} f=\left[\begin{array}{c}
w\left(e_{1}\right) \\
w\left(e_{2}\right) \\
\vdots \\
w\left(e_{8}\right)
\end{array}\right]
$$

- $\quad M^{\top} f$ encodes all the edges

The graph Laplacian L

\square The graph Laplacian L is obtained by

$$
\Delta f=\nabla \cdot \nabla f=M M^{\top} f
$$

- $M M^{\top} f$ is a vector of length $|V|$ where each element is the divergence of a vertex

$$
M M^{\top}\left[\begin{array}{c}
f\left(v_{1}\right) \\
f\left(v_{2}\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\Delta f\left(v_{1}\right) \\
\Delta f\left(v_{2}\right) \\
\vdots
\end{array}\right]
$$

\square e.g.

- $M M^{\top}$ is a $|V| \times|V|$ matrix

The graph Laplacian L

```
i mport numpy as np
M = np. array([[[ 1, - 1, 1, - 1, 0, 0, 1, - 1],
    [-1, 1, 0, 0, 1, -1, 0, 0],
    [ 0, 0,-1, 1, -1, 1, 0, 0],
    [ 0, 0, 0, 0, 0, 0,-1, 1]])
# Compute MMT
M @Mtranspose( )
```

$\square \quad$ Output
$\operatorname{array}\left(\left[\begin{array}{llll}{[6,-2,} & -2\end{array}\right]\right.$, $\left[\begin{array}{llll}-2, & 4, & -2, & 0]\end{array}\right.$ $\left[\begin{array}{llll}-2, & -2, & 4, & 0\end{array}\right]$, $\left[\begin{array}{llll}-2, & 0, & 0, & 2]\end{array}\right)$

There will be a lot of hands-on so please try this on your own computer now

- $M M^{\top}$ is a $|V| \times|V|$ matrix

Properties of L

\square The graph Laplacian L is obtained as $L=M M^{\top}$

1. For an undirected graph, L can be computed as $L=D-A$ from the degree matrix D and the adjacency matrix A
■ That is, $M M^{\top}=D-A$
2. For an undirected graph, L is symmetric (and in fact, positive semidefinite)

- This allows us to obtain a real orthogonal eigenbasis with real eigenvalues
- The eigenbasis has topological significance but we will save this discussion for Part 3

3. L has a mathematical interpretation which will allow us to make use of the eigenbasis

Property 1: $L=D-A$

\square The undirected incidence matrix M of earlier graph

$$
M=\begin{gathered}
e_{1} \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left[\begin{array}{ccc}
e_{2} & e_{3} & e_{4} \\
-1 & 1 & 0 \\
1 & 1 \\
0 & 0 & 1 \\
0 & -1 & -1 \\
0 & 0 & 0 \\
0 & -1
\end{array}\right]
$$

- Observe that for the undirected case, we let the second non-zero value that appear in every column be -1
\square Adjacency matrix of the graph, $A=\begin{aligned} & v_{2} \\ & v_{3} \\ & v_{4}\end{aligned}\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
- A is easier to construct than M (no need to name the edges and no messy -1 values)

Property 1: $L=D-A$

\square Run the following to verify that $L=M M^{\top}=D-A$
$M M^{\top}$

\# Comput e MMヘT
L = M @ Mtranspose()
$D-A$
i mport numpy as np
$A=n p . \operatorname{array}([[0,1,1,1]$,
$[1,0,1,0]$,
$[1,1,0,0]$,
$[1,0,0,0]])$
$D=n p . d i \operatorname{ag}(A$. sunf axi $s=0)$)
L=D A
L

Property 2: Eigenbasis

\square A eigenvector for a square matrix L is a vector u where

$$
L u=\lambda u
$$

- u is invariant under transformation L
- The scaling factor λ is a eigenvalue - Each L has a unique set of eigenvalues
- For real symmetric L
- The eigenvalues are real
- A set of real and orthogonal eigenvectors that correspond to distinct eigenvalues can be computed

Property 2: Eigenbasis

\square Let $\lambda_{1}, \ldots, \lambda_{n}$ where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of L and define the
Rayleigh quotient $\frac{x^{\top} L x}{x^{\top} x}$ for arbitrary vector x
\square Min-max Theorem

- Maximum of the Rayleigh quotient,

$$
\max _{\|x\|=1} \frac{x^{\top} L x}{x^{\top} x}=\lambda_{1}
$$

- Minimum of the Rayleigh quotient,

$$
\min _{\|x\|=1} \frac{x^{\top} L x}{x^{\top} x}=\lambda_{n}
$$

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square Let the adjacency matrix $A=\left(a_{i j}\right)$

$$
A=\left[\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
a_{12} & 0 & a_{23} & 0 \\
a_{13} & a_{23} & 0 & 0 \\
a_{14} & 0 & 0 & 0
\end{array}\right]
$$

\square Consider partitioning graph into 2 parts, S and \bar{S}

- If $S=\left\{v_{1}, v_{2}, v_{4}\right\}$, then we need to remove the two edges which sum to $a_{13}+a_{23}$

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square Let the adjacency matrix $A=\left(a_{i j}\right)$

$$
A=\left[\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
a_{12} & 0 & a_{23} & 0 \\
a_{13} & a_{23} & 0 & 0 \\
a_{14} & 0 & 0 & 0
\end{array}\right]
$$

\square Consider partitioning graph into 2 parts, S and \bar{S}

- If $S=\left\{v_{1}, v_{3}, v_{4}\right\}$,
then the sum of the edges to be removed is $a_{12}+a_{23}$

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square Let the adjacency matrix $A=\left(a_{i j}\right)$

$$
A=\left[\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
a_{12} & 0 & a_{23} & 0 \\
a_{13} & a_{23} & 0 & 0 \\
a_{14} & 0 & 0 & 0
\end{array}\right]
$$

\square Consider partitioning graph into 2 parts, S and \bar{S}

- The Laplacian L can be related to the sum of the edges to remove

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square We first note that

$$
\begin{aligned}
& x^{\top} L x=\frac{1}{2} \sum_{i, j=1}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& x^{\top} L x=x^{\top} D x-x^{\top} A x=\sum_{i=1}^{m} d_{i} x_{i}^{2}-\sum_{i, j=1}^{m} a_{i j} x_{i} x_{j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{m} d_{i} x_{i}^{2}-2 \sum_{i, j=1}^{m} a_{i j} x_{i} x_{j}+\sum_{i=1}^{m} d_{i} x_{i}^{2}\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square Then

$$
\begin{aligned}
x^{\top} L x & =\frac{1}{2} \sum_{i, j=1}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i, j=1, i \neq j}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& =\sum_{i, j=1, i<j}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square Furthermore

$$
x^{\top} L x=\sum_{i, j=1, i<j}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

- Suppose x is a vector of only the values +1 and -1 , indicating the membership of the vertices in a set S

$$
x_{i}=\left\{\begin{array}{cl}
1 & \text { if } v_{i} \in S \\
-1 & \text { if } v_{i} \notin S
\end{array}\right.
$$

This way x can indicate the result of

$$
\begin{aligned}
& \text { If } x_{i}=x_{j} \\
& \left(x_{i}-x_{j}\right)^{2}=0 \\
& \text { If } x_{i} \neq x_{j} \\
& \left(x_{i}-x_{j}\right)^{2}=4
\end{aligned}
$$

$$
\text { i.e. }(-1-1)^{2} \text { or }(1-(-1))^{2}=4
$$ a 2-partition, S and \bar{S}

Property 3: Mathematical property

\square A precise mathematical property of L relates it to "sparsest cut" problems
\square Finally

$$
\begin{aligned}
x^{\top} L x & =\sum_{i, j=1, i<j}^{m} a_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& =4 \sum_{1 \leq i<j \leq m, x_{i} \neq x_{j}} a_{i j}
\end{aligned}
$$

- Hence $x^{\top} L x$ is 4 times the number of edges between the adjacent vertices from S and \bar{S}

Finding x that minimizes $x^{\top} L x$

- Compute $x^{\top} L x$

$$
\begin{aligned}
A & =\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
L & =\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- when $x=[1-1-1-1], x^{\top} L x=12$

$$
x^{\top} L x=\left[\begin{array}{llll}
1 & -1 & -1 & -1
\end{array}\right]\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
-1
\end{array}\right]=12
$$

$$
\begin{aligned}
& x=n p . \operatorname{array}([1,-1,-1,-1]) \\
& x @ L @ x
\end{aligned}
$$

Finding x that minimizes $x^{\top} L x$

\square Exercise: Compute $x^{\top} L x$ for all x

\square Sample output

Finding x that minimizes $x^{\top} L x$

- $x^{\top} L x=0$ when $x=\mathbf{1}=$
 [$-1-1-1-1$])
- We do not want this solution
- Use $x^{\top} L x=4$ instead

Group 1 Group $2 x^{\top} L x$

\square Next we compute the $\frac{x^{\top} L x}{x^{\top} x}$ values from these © 2021. Ng Yen Kaow

Finding x that minimizes $x^{\top} L x / x^{\top} x$

 \square Complete list of $\frac{x^{\top} L x}{x^{\top} x}$ values (x is of only +1 and $-1 \Rightarrow x^{\top} x=|x|=4$)| Group 1 | Group 2 | $\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}$ | $\frac{\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}}$ |
| ---: | :---: | ---: | ---: |
| v_{1} | $v_{2} v_{3} v_{4}$ | 12 | 3 |
| v_{2} | $v_{1} v_{3} v_{4}$ | 8 | 2 |
| v_{3} | $v_{1} v_{2} v_{4}$ | 8 | 2 |
| v_{4} | $v_{1} v_{2} v_{3}$ | 4 | 1 |
| $v_{1} v_{2}$ | $v_{3} v_{4}$ | 12 | 3 |
| $v_{1} v_{3}$ | $v_{2} v_{4}$ | 12 | 3 |
| $v_{1} v_{4}$ | $v_{2} v_{3}$ | 8 | 2 |

\square Optimal $\frac{x^{\top} L x}{x^{\top} x}=1$, when $x=\left[\begin{array}{llll}1 & 1 & 1 & -1\end{array}\right]$ or $\left[\begin{array}{llll}-1 & -1 & -1 & 1\end{array}\right]$
\square This optimal x can be approximately obtained...

Finding x that minimizes $x^{\top} L x / x^{\top} x$

\square Let $\lambda_{1}, \ldots, \lambda_{k}$ where $\lambda_{1} \geq \ldots \geq \lambda_{k}$ be the eigenvalues of L, and μ_{1}, \ldots, μ_{k} the respective eigenvectors

- By the min-max theorem of Rayleigh quotient,

$$
\min _{x} \frac{x^{\top} L x}{x^{\top} x}=\lambda_{k}
$$

```
# Fi nd the ei genval ues and ei genvectors
ei genval ues, ei genvect ors = np.l i nal g. ei g(L)
# Sort ei genval ues i n decreasing or der
i dx = ei genval ues. argsort()[ : : - 1]
ei genval ues = ei genval ues[ i dx]
ei genvect ors = ei genvectors[ : , i dx]
ei genval ues
```

$\operatorname{array}([4.000000 \mathrm{e}+00,3.000000 \mathrm{e}+00,1.000000 \mathrm{e}+00, \quad 1.110223 \mathrm{e}-16])$

Eigendecomposition example

\square Eigenvalues

λ_{1}	λ_{2}	λ_{3}	λ_{4}
4.0000	3.0000	1.0000	0.0000

Trivial solution (no partition)
\square Eigenvectors

More precisely, $-9.51 \mathrm{E}-17$		
μ_{2}	μ_{3}	μ_{4}
0. 0000	0.0000	-0. 5000
0.7071	-0. 4082	-0. 5000
-0. 7071	-0. 4082	-0. 5000
0. 0000	0. 8165	-0. 5000

$\square \lambda_{3}=1=$ optimal value for $\frac{1}{2} \sum_{1 \leq i, j \leq m} a_{i j}\left(x_{i}-x_{j}\right)^{2}$
\square If group by the (\pm) sign, μ_{3} correctly places v_{1}, v_{2}, v_{3} in one group (-) and v_{4} in another (+)

Compromise in $+1 /-1$ restriction

\square By relaxing the restriction of +1 and -1 in x to allow any real number, an $x^{\top} L x$ smaller than the optimal under the restriction is often achieved

- The improvement can be guaranteed if x is orthogonal to $\mathbf{1}$ (or $\mathbf{- 1}$) since by the min-max theorem, $\frac{\mu_{k-1}^{\top} L \mu_{k-1}}{\mu_{k-1}^{\top} \mu_{k-1}}$ is minimal among all $\frac{x^{\top} L x}{x^{\top} x}$ that are orthogonal to μ_{k}
- However, in the present case, $x=[111-1]$ and not orthogonal to $\mu_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$
\square Still, $\frac{\mu_{3}{ }^{\top} L \mu_{3}}{\mu_{3}^{\top} \mu_{3}}=\lambda_{3}=1=\min _{x \in\{1,-1\}^{4}} \frac{x^{\top} L x}{x^{\top} x}$
- Though no guarantee, improvements are usual

Historical use of μ_{k-1}

- Historically μ_{k-1} received more attention than the other eigenvectors
- (Shi and Malik, 2000) started using multiple eigenvectors for clustering (see Part 3)
$\square \mu_{k-1}$ is called the Fiedler vector
$\square \lambda_{k-1}$ is called the Fiedler value
- The multiplicity of λ_{k-1} is always 1
- Also called the algebraic connectivity
\square The further λ_{k-1} is from 0 , the more highly connected is the graph (hard to separate)

Recap

\square An intuition from the Laplacian function (in continuous space) gave us the graph Laplacian matrix (in graph space)
\square Subsequently people found out that the graph Laplacian possesses several properties that lend it to solve graph cutting problems

