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Spectral Clustering
Part 1: The Graph Laplacian
Ng Yen Kaow
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

 𝛻𝛻𝑓𝑓(𝒙𝒙), the gradient at 𝑓𝑓(𝒙𝒙), is 
a vector pointing at the 
steepest ascent of 𝑓𝑓(𝒙𝒙)

 ∆𝑓𝑓, the Laplacian of 𝑓𝑓, is the divergence of 
𝛻𝛻𝑓𝑓, that is, ∆𝑓𝑓 𝒙𝒙 = 𝛻𝛻 � 𝛻𝛻𝛻𝛻 𝒙𝒙
 A scalar measurement of the smoothness 

in 𝛻𝛻𝑓𝑓 𝒙𝒙 about point 𝒙𝒙

Vector field 𝛻𝛻𝑓𝑓
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 𝛻𝛻𝑓𝑓(𝒙𝒙), the gradient at 𝑓𝑓(𝒙𝒙), is 
a vector pointing at the 
steepest ascent of 𝑓𝑓(𝒙𝒙)

 ∆𝑓𝑓, the Laplacian of 𝑓𝑓, is the divergence of 
𝛻𝛻𝑓𝑓, that is, ∆𝑓𝑓 𝒙𝒙 = 𝛻𝛻 � 𝛻𝛻𝛻𝛻 𝒙𝒙
 A scalar measurement of the smoothness 

in 𝛻𝛻𝑓𝑓 𝒙𝒙 about point 𝒙𝒙

Vector field 𝛻𝛻𝑓𝑓
Extend the concept

(from a continuous space) 
to graphs
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

Extend the concept
(from a continuous space) 

to graphs

 𝛻𝛻𝑓𝑓(𝒙𝒙), the gradient at 𝑓𝑓(𝒙𝒙), is 
a vector pointing at the 
steepest ascent of 𝑓𝑓(𝒙𝒙)

 Consider each vertex as a point on a grid
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Laplacian of a function
 Given a multivariate function 𝑓𝑓:ℝ𝑛𝑛 → ℝ

 The domain of 𝑓𝑓 are vertices
 𝑓𝑓 operates on each vertex 𝑣𝑣
 Write 𝑓𝑓(𝑣𝑣) instead of 𝑓𝑓(𝑥𝑥)

 The gradient from vertex
𝑣𝑣 to 𝑣𝑣𝑣 is 𝑓𝑓 𝑣𝑣′ − 𝑓𝑓 𝑣𝑣 and is
assigned to the edge 𝑒𝑒: 𝑣𝑣 → 𝑣𝑣𝑣

𝑣𝑣

 We want a matrix that encodes all the 
gradients ⇒ The Graph Laplacian matrix
 We first construct an incidence matrix

𝑓𝑓(𝑣𝑣)

𝑓𝑓 𝑣𝑣′ − 𝑓𝑓(𝑣𝑣)

𝑣𝑣′
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Incidence matrix

 Incidence matrix 𝑀𝑀

 Every column of 𝑀𝑀 represents an edge

𝑀𝑀⊤
1𝑓𝑓 = 1 −1 0 0

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3
𝑓𝑓 𝑣𝑣4

= 𝑓𝑓 𝑣𝑣1 − 𝑓𝑓 𝑣𝑣2 = 𝑤𝑤 𝑒𝑒1
column 1 of 𝑀𝑀

1 −1 1 −1
−1 1 0 0

0 0 1 −1
1 −1 0 0

0 0 −1 1
0 0 0 0

−1 1 0 0
0 0 −1 1

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6 𝑒𝑒7 𝑒𝑒8
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4

𝑀𝑀 =

Let vector 𝑓𝑓 =

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3
𝑓𝑓 𝑣𝑣4

def
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Incidence matrix

 Incidence matrix 𝑀𝑀

 Every column of 𝑀𝑀 represents an edge

1 −1 1 −1
−1 1 0 0

0 0 1 −1
1 −1 0 0

0 0 −1 1
0 0 0 0

−1 1 0 0
0 0 −1 1

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4 𝑒𝑒5 𝑒𝑒6 𝑒𝑒7 𝑒𝑒8
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4

𝑀𝑀 =

Let vector 𝑓𝑓 =

𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
𝑓𝑓 𝑣𝑣3
𝑓𝑓 𝑣𝑣4

𝑀𝑀⊤ 𝑓𝑓 =

𝑤𝑤(𝑒𝑒1)
𝑤𝑤(𝑒𝑒2)
⋮

𝑤𝑤(𝑒𝑒8)  𝑀𝑀⊤𝑓𝑓 encodes all the edges
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The graph Laplacian 𝐿𝐿
 The graph Laplacian 𝐿𝐿 is obtained by

∆𝑓𝑓 = 𝛻𝛻 � 𝛻𝛻𝛻𝛻 = 𝑀𝑀𝑀𝑀⊤𝑓𝑓
 𝑀𝑀𝑀𝑀⊤𝑓𝑓 is a vector of length 𝑉𝑉 where each 

element is the divergence of a vertex

 e.g.

 𝑀𝑀𝑀𝑀⊤ is a 𝑉𝑉 × 𝑉𝑉 matrix

𝑀𝑀𝑀𝑀⊤𝑓𝑓 1 = 1 −1 1 −1 0 0 1 −1

𝑤𝑤(𝑒𝑒1)
𝑤𝑤(𝑒𝑒2)
𝑤𝑤(𝑒𝑒3)
𝑤𝑤(𝑒𝑒4)
𝑤𝑤(𝑒𝑒5)
𝑤𝑤(𝑒𝑒6)
𝑤𝑤(𝑒𝑒7)
𝑤𝑤(𝑒𝑒8)

= 𝑤𝑤 𝑒𝑒1 − 𝑤𝑤 𝑒𝑒2 + 𝑤𝑤(𝑒𝑒3) − 𝑤𝑤 𝑒𝑒4 + 𝑤𝑤(𝑒𝑒7) − 𝑤𝑤 𝑒𝑒8

divergence of vertex 𝑣𝑣1

𝑀𝑀𝑀𝑀⊤
𝑓𝑓 𝑣𝑣1
𝑓𝑓 𝑣𝑣2
⋮

=
∆𝑓𝑓(𝑣𝑣1)
∆𝑓𝑓(𝑣𝑣2)

⋮
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The graph Laplacian 𝐿𝐿

 Output

 𝑀𝑀𝑀𝑀⊤ is a 𝑉𝑉 × 𝑉𝑉 matrix

import numpy as np

M = np.array([[ 1,-1, 1,-1, 0, 0, 1,-1],
[-1, 1, 0, 0, 1,-1, 0, 0],
[ 0, 0,-1, 1,-1, 1, 0, 0],
[ 0, 0, 0, 0, 0, 0,-1, 1]])

# Compute MM^T
M @ M.transpose()

array([[ 6, -2, -2, -2],
[-2,  4, -2,  0],
[-2, -2,  4,  0],
[-2,  0,  0,  2]])

There will be a lot of hands-on 
so please try this

on your own computer now
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Properties of 𝐿𝐿
 The graph Laplacian 𝐿𝐿 is obtained as 𝐿𝐿 = 𝑀𝑀𝑀𝑀⊤

1. For an undirected graph, 𝐿𝐿 can be computed as 
𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴 from the degree matrix 𝐷𝐷 and the 
adjacency matrix 𝐴𝐴
 That is, 𝑀𝑀𝑀𝑀⊤ = 𝐷𝐷 − 𝐴𝐴

2. For an undirected graph, 𝐿𝐿 is symmetric (and in 
fact, positive semidefinite)
 This allows us to obtain a real orthogonal 

eigenbasis with real eigenvalues
 The eigenbasis has topological significance but we will save this 

discussion for Part 3

3. 𝐿𝐿 has a mathematical interpretation which will 
allow us to make use of the eigenbasis



© 2021. Ng Yen Kaow

Property 1: 𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴
 The undirected incidence matrix 𝑀𝑀 of earlier 

graph

 Observe that for the undirected case, we let the second non-zero 
value that appear in every column be −1

 Adjacency matrix of the graph, 𝐴𝐴 =

 𝐴𝐴 is easier to construct than 𝑀𝑀 (no need to name the edges and 
no messy −1 values)

1 1
−1 0

0 1
1 0

0 −1
0 0

−1 0
0 −1

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4

𝑀𝑀 =

0 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
𝑣𝑣4
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Property 1: 𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴
 Run the following to verify that 𝐿𝐿 = 𝑀𝑀𝑀𝑀⊤ = 𝐷𝐷 − 𝐴𝐴

import numpy as np

M = np.array([[ 1, 1, 0, 1],
[-1, 0, 1, 0],
[ 0,-1,-1, 0],
[ 0, 0, 0,-1]])

# Compute MM^T
L = M @ M.transpose()

L

import numpy as np

A = np.array([[0, 1, 1, 1],
[1, 0, 1, 0],
[1, 1, 0, 0],
[1, 0, 0, 0]])

D = np.diag(A.sum(axis=0))

L=D-A
L

𝐷𝐷 − 𝐴𝐴𝑀𝑀𝑀𝑀⊤
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Property 2: Eigenbasis
 A eigenvector for a square matrix 𝐿𝐿 is a 

vector 𝑢𝑢 where
𝐿𝐿𝑢𝑢 = 𝜆𝜆𝑢𝑢

 𝑢𝑢 is invariant under transformation 𝐿𝐿
 The scaling factor 𝜆𝜆 is a eigenvalue

 Each 𝐿𝐿 has a unique set of eigenvalues
 For real symmetric 𝐿𝐿
 The eigenvalues are real
 A set of real and orthogonal

eigenvectors that correspond to distinct 
eigenvalues can be computed
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Property 2: Eigenbasis
 Let 𝜆𝜆1,…, 𝜆𝜆𝑛𝑛 where 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ … ≥ 𝜆𝜆𝑛𝑛 be 

the eigenvalues of 𝐿𝐿 and define the 
Rayleigh quotient 𝑥𝑥

⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

for arbitrary vector 𝑥𝑥
 Min-max Theorem
 Maximum of the Rayleigh quotient, 

max
𝑥𝑥 =1

𝑥𝑥⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆1

 Minimum of the Rayleigh quotient, 

min
𝑥𝑥 =1

𝑥𝑥⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆𝑛𝑛
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Let the adjacency matrix 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖

 Consider partitioning graph into 2 parts, 𝑆𝑆 and ̅𝑆𝑆

𝑎𝑎13

𝑎𝑎12
𝑎𝑎23

𝑎𝑎14
𝐴𝐴 =

0 𝑎𝑎12
𝑎𝑎12 0

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 0

𝑎𝑎13 𝑎𝑎23
𝑎𝑎14 0

0 0
0 0

𝑎𝑎13

𝑎𝑎12 𝑎𝑎23

 If 𝑆𝑆 = 𝑣𝑣1,𝑣𝑣2,𝑣𝑣4 , then 
we need to remove the 
two edges which sum 
to 𝑎𝑎13 + 𝑎𝑎23

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣4

𝑎𝑎14
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Let the adjacency matrix 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖

 Consider partitioning graph into 2 parts, 𝑆𝑆 and ̅𝑆𝑆

𝑎𝑎13

𝑎𝑎12
𝑎𝑎23

𝑎𝑎14
𝐴𝐴 =

0 𝑎𝑎12
𝑎𝑎12 0

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 0

𝑎𝑎13 𝑎𝑎23
𝑎𝑎14 0

0 0
0 0

𝑎𝑎13

𝑎𝑎12 𝑎𝑎23

 If 𝑆𝑆 = 𝑣𝑣1,𝑣𝑣3,𝑣𝑣4 , 
then the sum of the 
edges to be removed 
is 𝑎𝑎12 + 𝑎𝑎23

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣4

𝑎𝑎14
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Let the adjacency matrix 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖

 Consider partitioning graph into 2 parts, 𝑆𝑆 and ̅𝑆𝑆
 The Laplacian 𝐿𝐿 can be related to the sum of 

the edges to remove

𝑎𝑎13

𝑎𝑎12
𝑎𝑎23

𝑎𝑎14
𝐴𝐴 =

0 𝑎𝑎12
𝑎𝑎12 0

𝑎𝑎13 𝑎𝑎14
𝑎𝑎23 0

𝑎𝑎13 𝑎𝑎23
𝑎𝑎14 0

0 0
0 0
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 We first note that

𝑥𝑥⊤𝐿𝐿𝐿𝐿 =
1
2�𝑖𝑖,𝑗𝑗=1

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2

𝑥𝑥⊤𝐿𝐿𝐿𝐿 = 𝑥𝑥⊤𝐷𝐷𝐷𝐷 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 = �
𝑖𝑖=1

𝑚𝑚

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖2 − �
𝑖𝑖,𝑗𝑗=1

𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

=
1
2

�
𝑖𝑖=1

𝑚𝑚

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖2 − 2 �
𝑖𝑖,𝑗𝑗=1

𝑚𝑚

𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 + �
𝑖𝑖=1

𝑚𝑚

𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖2

=
1
2
�

𝑖𝑖,𝑗𝑗=1

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2

Hall. An r-dimensional quadratic placement algorithm, 1970
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Then

𝑥𝑥⊤𝐿𝐿𝐿𝐿 =
1
2�𝑖𝑖,𝑗𝑗=1

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2

=
1
2�𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2

= �
𝑖𝑖,𝑗𝑗=1,𝑖𝑖<𝑗𝑗

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2



© 2021. Ng Yen Kaow

Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Furthermore

𝑥𝑥⊤𝐿𝐿𝐿𝐿 = �
𝑖𝑖,𝑗𝑗=1,𝑖𝑖<𝑗𝑗

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2

 Suppose 𝑥𝑥 is a vector of only the 
values +1 and -1, indicating the 
membership of the vertices in a set 𝑆𝑆

𝑥𝑥𝑖𝑖 = � 1 if 𝑣𝑣𝑖𝑖 ∈ 𝑆𝑆
−1 if 𝑣𝑣𝑖𝑖 ∉ 𝑆𝑆

This way 𝑥𝑥 can indicate the result of 
a 2-partition, 𝑆𝑆 and ̅𝑆𝑆

If 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2 = 0

If 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2 = 4
i.e. −1 − 1 2 or 1 − (−1) 2 = 4
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Property 3: Mathematical property
 A precise mathematical property of 𝐿𝐿 relates it to 

“sparsest cut” problems
 Finally

 Hence 𝑥𝑥⊤𝐿𝐿𝐿𝐿 is 4 times the number of edges 
between the adjacent vertices from 𝑆𝑆 and ̅𝑆𝑆

= 4�
1≤𝑖𝑖<𝑗𝑗≤𝑚𝑚,𝑥𝑥𝑖𝑖≠𝑥𝑥𝑗𝑗

𝑎𝑎𝑖𝑖𝑖𝑖

𝑥𝑥⊤𝐿𝐿𝐿𝐿 = �
𝑖𝑖,𝑗𝑗=1,𝑖𝑖<𝑗𝑗

𝑚𝑚
𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2
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Finding 𝑥𝑥 that minimizes 𝑥𝑥⊤𝐿𝐿𝐿𝐿
 Compute 𝑥𝑥⊤𝐿𝐿𝐿𝐿

 e.g. 

 when 𝑥𝑥 = 1 − 1 − 1 − 1 , 𝑥𝑥⊤𝐿𝐿𝐿𝐿 = 12

𝐿𝐿 =
3 −1

−1 2
−1 −1
−1 0

−1 −1
−1 0

2 0
0 1

𝑥𝑥⊤𝐿𝐿𝐿𝐿 = 1 −1 −1 −1

3 −1
−1 2

−1 −1
−1 0

−1 −1
−1 0

2 0
0 1

1
−1
−1
−1

= 12

1

1 1
1

𝐴𝐴 =
0 1
1 0

1 1
1 0

1 1
1 0

0 0
0 0

x = np.array([1, -1, -1, -1])
x @ L @ x
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Finding 𝑥𝑥 that minimizes 𝑥𝑥⊤𝐿𝐿𝐿𝐿
 Exercise: Compute 𝑥𝑥⊤𝐿𝐿𝐿𝐿 for all 𝑥𝑥

 Sample output
['v1' 'v2' 'v3' 'v4'] [] 0
['v1' 'v2' 'v3'] ['v4'] 4
['v1' 'v2' 'v4'] ['v3'] 8
['v1' 'v2'] ['v3' 'v4'] 12
['v1' 'v3' 'v4'] ['v2'] 8
['v1' 'v3'] ['v2' 'v4'] 12
['v1' 'v4'] ['v2' 'v3'] 8
['v1'] ['v2' 'v3' 'v4'] 12
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Finding 𝑥𝑥 that minimizes 𝑥𝑥⊤𝐿𝐿𝐿𝐿
 𝑥𝑥⊤𝐿𝐿𝐿𝐿 = 0 when 𝑥𝑥 = 𝟏𝟏 =

1 1 1 1 (or 𝑥𝑥 = −𝟏𝟏 =
−1 −1 −1 −1 )

 We do not want this 
solution

 Use 𝑥𝑥⊤𝐿𝐿𝐿𝐿 = 4 instead 

Group 1 Group 2 𝑥𝑥⊤𝐿𝐿𝐿𝐿

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12

𝑣𝑣2 𝑣𝑣1 𝑣𝑣3 𝑣𝑣4 8

𝑣𝑣3 𝑣𝑣1 𝑣𝑣2 𝑣𝑣4 8

𝑣𝑣4 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 4

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12

𝑣𝑣1 𝑣𝑣3 𝑣𝑣2 𝑣𝑣4 12

𝑣𝑣1 𝑣𝑣4 𝑣𝑣2 𝑣𝑣3 8

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 ∅ 0

 Next we compute the 𝑥𝑥
⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

values from these
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Finding 𝑥𝑥 that minimizes ⁄𝑥𝑥⊤𝐿𝐿𝐿𝐿 𝑥𝑥⊤𝑥𝑥
 Complete list of 𝑥𝑥

⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

values
(𝑥𝑥 is of only +1 and -1 ⇒ 𝑥𝑥⊤𝑥𝑥 = 𝑥𝑥 = 4)

 Optimal 𝑥𝑥
⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

= 1, when 𝑥𝑥 = 1 1 1 −1 or −1 −1 −1 1

 This optimal 𝒙𝒙 can be approximately obtained…

Group 1 Group 2 𝒙𝒙⊤𝑳𝑳𝑳𝑳 𝒙𝒙⊤𝑳𝑳𝑳𝑳
𝒙𝒙⊤𝒙𝒙

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12 3
𝑣𝑣2 𝑣𝑣1 𝑣𝑣3 𝑣𝑣4 8 2
𝑣𝑣3 𝑣𝑣1 𝑣𝑣2 𝑣𝑣4 8 2
𝑣𝑣4 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 4 1

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 12 3
𝑣𝑣1 𝑣𝑣3 𝑣𝑣2 𝑣𝑣4 12 3
𝑣𝑣1 𝑣𝑣4 𝑣𝑣2 𝑣𝑣3 8 2
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Finding 𝑥𝑥 that minimizes ⁄𝑥𝑥⊤𝐿𝐿𝐿𝐿 𝑥𝑥⊤𝑥𝑥
 Let 𝜆𝜆1,…, 𝜆𝜆𝑘𝑘 where 𝜆𝜆1 ≥ … ≥ 𝜆𝜆𝑘𝑘 be the 

eigenvalues of 𝐿𝐿, and 𝜇𝜇1,…, 𝜇𝜇𝑘𝑘 the respective 
eigenvectors
 By the min-max theorem of Rayleigh quotient,

min
𝑥𝑥

𝑥𝑥⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

= 𝜆𝜆𝑘𝑘

# Find the eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(L)

# Sort eigenvalues in decreasing order
idx = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[idx]
eigenvectors = eigenvectors[:,idx]
eigenvalues

array([4.000000e+00, 3.000000e+00, 1.000000e+00, 1.110223e-16])
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Eigendecomposition example
 Eigenvalues

 Eigenvectors

 𝜆𝜆3 = 1 = optimal value for 1
2
∑1≤𝑖𝑖,𝑗𝑗≤𝑚𝑚 𝑎𝑎𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

2

 If group by the (±) sign, 𝜇𝜇3 correctly places 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 in 
one group (−) and 𝑣𝑣4 in another (+)

𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 𝜇𝜇4
0.8660 0.0000 0.0000 -0.5000

-0.2887 0.7071 -0.4082 -0.5000

-0.2887 -0.7071 -0.4082 -0.5000

-0.2887 0.0000 0.8165 -0.5000

𝜆𝜆1 𝜆𝜆2 𝜆𝜆3 𝜆𝜆4
4.0000 3.0000 1.0000 0.0000

Trivial solution (no partition)

More precisely, -9.51E-17
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Compromise in +1/-1 restriction
 By relaxing the restriction of +1 and -1 in 𝑥𝑥 to 

allow any real number, an 𝑥𝑥⊤𝐿𝐿𝐿𝐿 smaller than the 
optimal under the restriction is often achieved

 The improvement can be guaranteed if 𝑥𝑥 is 
orthogonal to 𝟏𝟏 (or −𝟏𝟏) since by the min-max 
theorem, 𝜇𝜇𝑘𝑘−1

⊤𝐿𝐿𝜇𝜇𝑘𝑘−1
𝜇𝜇𝑘𝑘−1⊤𝜇𝜇𝑘𝑘−1

is minimal among all 𝑥𝑥
⊤𝐿𝐿𝐿𝐿
𝑥𝑥⊤𝑥𝑥

that are orthogonal to 𝜇𝜇𝑘𝑘
 However, in the present case, 𝑥𝑥 = [1 1 1 −1] and 

not orthogonal to 𝜇𝜇4 = 1 1 1 1

 Still, 𝜇𝜇3
⊤𝐿𝐿𝜇𝜇3

𝜇𝜇3⊤𝜇𝜇3
= 𝜆𝜆3 = 1 = min

𝒙𝒙∈{1,−1}𝟒𝟒
𝑥𝑥⊤𝐿𝐿𝑥𝑥
𝑥𝑥⊤𝑥𝑥

 Though no guarantee, improvements are usual
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Historical use of 𝜇𝜇𝑘𝑘−1
 Historically 𝜇𝜇𝑘𝑘−1 received more 

attention than the other eigenvectors
 (Shi and Malik, 2000) started using multiple 

eigenvectors for clustering (see Part 3)

 𝜇𝜇𝑘𝑘−1 is called the Fiedler vector
 𝜆𝜆𝑘𝑘−1 is called the Fiedler value
 The multiplicity of 𝜆𝜆𝑘𝑘−1 is always 1
 Also called the algebraic connectivity

 The further 𝜆𝜆𝑘𝑘−1 is from 0, the more highly 
connected is the graph (hard to separate)
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Recap
 An intuition from the Laplacian function (in 

continuous space) gave us the graph 
Laplacian matrix (in graph space)

 Subsequently people found out that the 
graph Laplacian possesses several 
properties that lend it to solve graph cutting 
problems
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