Short Notes On Similarity/Dissimilarity Measures

Ng Yen Kaow

Distance/Dissimilarity \& Similarity
\square Let $d_{i j}$ denote the distance/dissimilarity between two objects x_{i} and x_{j}

- The objects are, for example, strings, sequences, structures, words, documents, pixels, or vectors (of features)
\square Similarly $s_{i j}$ denotes the similarity between x_{i} and x_{j}
- Comparing some objects are better done with a similarity measure, while comparing some other objects are better with a dissimilarity measure

Desirable properties

\square Conditions for metric distance

- $d_{i j} \geq 0$ (non-negativity)
- $d_{i j}=0$ if and only if $i=j$ (identity of indiscernible pairs)
- $d_{i j}=d_{j i}$ (symmetry)
- $d_{i j} \leq d_{i k}+d_{k j}$ (triangular inequality)
\square Similar intuitions for other dissimilarity (or similarity) measures
\square Many dissimilarity/similarity measures can be defined

Examples of dissimilarity measures

\square Strings/Sequences

- Hamming distance
- Sequence alignment, e.g. edit distance
\square Structure
- Root Mean Square Deviation (RMSD)
- See https://en.wikipedia.org/wiki/Structural_alignment Hamming distance, edit distance, RMSD are all metric
\square Vectors
- Euclidean distance
- Metric distance
- Non-metric distance

Examples of similarity measures

\square Words/Documents

- Bag-of-words, tf-idf
- Semantic (https://en.wikipedia.org/wiki/Semantic_similarity)
- Vector (https://en.wikipedia.org/wiki/Word_embedding)
\square Vectors
- Correlations (Pearson etc.)
- Covariance
\square Principal Component Analysis
- Gaussian $e^{-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}}$
\square Mapping to infinite dimensional space (Kernel function)
\square Probability distribution (co-occurrence probability)
$\square \quad$ Heat function (transition probability)

Gaussian function

\square The Gaussian function is

$$
K\left(x_{i}, x_{j}\right)=e^{-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}}
$$

- Used prominently in
- Kernel methods
- Image segmentation (Wu and Leary 1993, Normalized Cut 1997)
- Dimensionality reduction (Eigenmap 2003, Diffusion maps 2005, t-SNE 2007, UMAP 2018)
\square Pros:
- Linear combination of $\left(x_{i}^{\top} x_{j}\right)^{k}$ terms for all powers of k
- Fast decay to zero
- Symmetric, non-negative, identity
\square Con: Sensitive to σ

Converting $d_{i j} \Leftrightarrow s_{i j}$

\square Difficult to obtain $s_{i j}$ from $d_{i j}$ and vice versa

- Most conversions will be dissatisfactory, resulting in non-metric distance
\square Ad hoc conversion between dissimilarity $D=$ $\left(d_{i j}\right)$ and similarity $S=\left(s_{i j}\right)$
- Inverse conversion
$\square d_{i j}=\mathrm{const} *\left(1+s_{i j}\right)^{-1}$
$\square s_{i j}=$ const $*\left(1+d_{i j}\right)^{-1}$
- Linear conversion
$\square d_{i j}=$ const $-s_{i j}$
$\square s_{i j}=\mathrm{const}-d_{i j}$

Euclidean distance $d_{i j} \Leftrightarrow s_{i j}$

\square Let $D=\left(d_{i j}\right)$ be given by the Pythagorean

$$
d_{i j}^{2}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{\top}
$$

where x_{i} and x_{j} are row vectors
\square For $S=\left(s_{i j}\right)$

- Cosine similarity

$$
s_{i j}=\frac{x_{i} x_{j}^{\top}}{\left\|x_{i}\right\|\left\|x_{j}\right\|}
$$

- Linear kernel similarity

$$
s_{i j}=x_{i} x_{j}^{\top}
$$

- Con: $s_{i j} \leq s_{u v}$ does not imply $d_{i j} \geq d_{u v}$
- Pro: Can be converted to $d_{j k}$ easily (next slide)

Euclidean distance $d_{i j} \Leftrightarrow s_{i j}$

\square If $s_{i j}$ is the linear kernel similarity, that is,
$s_{i j}=x_{i} x_{j}^{\top}$
$\square d_{i j}^{2}=\left(s_{i i}+s_{j j}\right)-2 s_{i j}$

- $S=-\frac{1}{2} C D C$
where
$C=I-\frac{1}{n} \mathbf{1 1}^{\top}$, the centering matrix
1 is a column vector of all ones (hence $\mathbf{1 1}^{\top}$ is a matrix with all ones of the same dimension as D)
\square No similar relation exists for the cosine distance (use ad hoc)

Gaussian similarity $s_{i j} \Leftrightarrow d_{i j}$

- For Gaussian similarity $S=\left(s_{i j}\right)$ and dissimilarity $D=\left(d_{i j}\right)$
- $s_{i j}=e^{-\frac{d_{i j}^{2}}{2 \sigma^{2}}}$
- Intuitively $d_{i j}=-\alpha \log \left(s_{i j}\right)$

$$
\square d_{i i}=0 \text { and } d_{i j}=d_{j i}
$$

- Alternatively, define an induced distance $d_{i j}^{\prime}=s_{i i}+s_{j j}-2 s_{i j}$, then
$\square d_{i j}^{\prime}=2\left(1-s_{i j}\right)$
- $d_{i i}^{\prime}=0$
- $d_{i j}^{\prime}=d_{j i}^{\prime}$

But still no triangular inequality guarantee

