Short Notes On Similarity/Dissimilarity Measures

Ng Yen Kaow

© 2021. Ng Yen Kaow

Distance/Dissimilarity & Similarity

- □ Let d_{ij} denote the **distance/dissimilarity** between two objects x_i and x_j
 - The objects are, for example, strings, sequences, structures, words, documents, pixels, or vectors (of features)
- □ Similarly s_{ij} denotes the **similarity** between x_i and x_j
- Comparing some objects are better done with a similarity measure, while comparing some other objects are better with a dissimilarity measure

Desirable properties

- Conditions for metric distance
 - $d_{ij} \ge 0$ (non-negativity)
 - $d_{ij} = 0$ if and only if i = j (identity of indiscernible pairs)

•
$$d_{ij} = d_{ji}$$
 (symmetry)

- $d_{ij} \leq d_{ik} + d_{kj}$ (triangular inequality)
- Similar intuitions for other dissimilarity (or similarity) measures
- Many dissimilarity/similarity measures can be defined

Examples of dissimilarity measures

- Strings/Sequences
 - Hamming distance
 - Sequence alignment, e.g. edit distance
- Structure
 - Root Mean Square Deviation (RMSD)
 - See https://en.wikipedia.org/wiki/Structural_alignment

Hamming distance, edit distance, RMSD are all metric

Vectors

- Euclidean distance
- Metric distance
- Non-metric distance

Examples of similarity measures

- Words/Documents
 - Bag-of-words, tf-idf
 - Semantic (https://en.wikipedia.org/wiki/Semantic_similarity)
 - Vector (https://en.wikipedia.org/wiki/Word_embedding)

Vectors

- Correlations (Pearson etc.)
- Covariance
 - Principal Component Analysis
- Gaussian $e^{-\|x_i x_j\|^2/2\sigma^2}$
 - Mapping to infinite dimensional space (Kernel function)
 - Probability distribution (co-occurrence probability)
 - Heat function (transition probability)

Gaussian function

□ The Gaussian function is

$$K(x_i, x_j) = e^{-\|x_i - x_j\|^2/2\sigma^2}$$

Used prominently in

- Kernel methods
- Image segmentation (Wu and Leary 1993, Normalized Cut 1997)
- Dimensionality reduction (Eigenmap 2003, Diffusion maps 2005, t-SNE 2007, UMAP 2018)

Pros:

- Linear combination of $(x_i^{\mathsf{T}} x_j)^k$ terms for all powers of k
- Fast decay to zero
- Symmetric, non-negative, identity
- \Box Con: Sensitive to σ

Converting $d_{ij} \Leftrightarrow s_{ij}$

- Difficult to obtain s_{ij} from d_{ij} and vice versa
 - Most conversions will be dissatisfactory, resulting in non-metric distance
- Ad hoc conversion between dissimilarity $D = (d_{ij})$ and similarity $S = (s_{ij})$
 - Inverse conversion

$$d_{ij} = \operatorname{const} * (1 + s_{ij})^{-1}$$
$$s_{ij} = \operatorname{const} * (1 + d_{ij})^{-1}$$

Linear conversion

$$d_{ij} = \text{const} - s_{ij}$$
$$s_{ij} = \text{const} - d_{ij}$$

Euclidean distance $d_{ii} \Leftrightarrow s_{ij}$ □ Let $D = (d_{ij})$ be given by the Pythagorean $d_{ii}^2 = (x_i - x_i)(x_i - x_i)^{\mathsf{T}}$ where x_i and x_i are row vectors \Box For $S = (s_{ii})$ Cosine similarity $s_{ij} = \frac{x_i x_j^{\mathsf{T}}}{\|x_i\| \|x_i\|}$ Linear kernel similarity $s_{ii} = x_i x_i^{\mathsf{T}}$ Con: $s_{ij} \leq s_{uv}$ does not imply $d_{ii} \geq d_{uv}$ Pro: Can be converted to d_{ik} easily (next slide) © 2021. Ng Yen Kaow

Euclidean distance $d_{ii} \Leftrightarrow s_{ii}$ \Box If s_{ij} is the linear kernel similarity, that is, $s_{ii} = x_i x_i^{\mathsf{T}}$ $\bullet d_{ij}^2 = (s_{ii} + s_{jj}) - 2s_{ij}$ $S = -\frac{1}{2}CDC$ where $C = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$, the centering matrix **1** is a column vector of all ones (hence $\mathbf{1}\mathbf{1}^{\mathsf{T}}$ is a matrix with all ones of the same dimension as D) No similar relation exists for the cosine distance (use ad hoc)

Gaussian similarity $s_{ii} \Leftrightarrow d_{ii}$ \Box For Gaussian similarity $S = (s_{ii})$ and dissimilarity $D = (d_{ii})$ $\bullet \quad s_{ij} = e^{-\frac{d_{ij}^2}{2\sigma^2}}$ Intuitively $d_{ii} = -\alpha \log(s_{ii})$ \Box $d_{ii} = 0$ and $d_{ii} = d_{ii}$ Alternatively, define an induced distance $d'_{ii} = s_{ii} + s_{ii} - 2s_{ii}$, then $\Box d'_{ii} = 2(1 - s_{ii})$ $d'_{ii} = 0$ $\bullet d'_{ii} = d'_{ii}$ But still no triangular inequality guarantee

© 2021. Ng Yen Kaow

0 1