
© 2021. Ng Yen Kaow

Graph Neural Networks
Demystified

Ng Yen Kaow

An overview of the essential concepts in Stanford CS224W (Lectures 1~8)
with only oversimplified examples

© 2021. Ng Yen Kaow

Embeddings
 Relatively small vectors associated with each

object where similar objects have similar
embeddings

 Using the embeddings of graph elements, various
tasks can be performed
 Cluster nodes in a graph
 Predict properties of a node
 Predict if two nodes may be connected
 Classify entire graphs

 To perform each task, use the embedding with a
suitable ML method
 e.g. clustering can be performed with k-means

CS224W Lecture 1

© 2021. Ng Yen Kaow

Obtaining embeddings
 Embeddings can be formed with or learned from features

 Node-level features
 Degree
 Centrality (eigenvector/ betweenness/ closeness)
 Clustering coefficient
 Graphlets
 Structure-based features

 Link-level features
 Distance-based features
 Local/global neighborhood overlap

 Graph-level features
 Graph kernels

 Task-independent embeddings can be learned from
unsupervised learning

CS224W Lecture 2

© 2021. Ng Yen Kaow

Task-independent embeddings
 Unsupervised extraction by random walks
 DeepWalk

 Estimate pairwise distance between nodes (hence
their co-occurrence probability)
 Usable for finding product relatedness in recommender

 Node embeddings
1. Estimate node distances with random walks
2. Train a neural network (with node input and

embedding output) such that distances between
embeddings agree with estimated distances

 Anonymous Walk
 Embeddings for entire graphs

 Simpler method: just add up neighbors
CS224W Lecture 3

© 2021. Ng Yen Kaow

Embeddings by adding neighbors
 Sum up the features of (self and) neighbor nodes

 Features of nodes in close proximity will become similar
Example: Let ℎ𝑖𝑖

𝑗𝑗 denote features of node 𝑖𝑖 at iteration 𝑗𝑗 and let ℎ10 = 1 0 0 ,
ℎ20 = 0 1 0 , and ℎ30 = 0 0 1

 ℎ1 ≡ ℎ2 after only 1 iteration

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

1 0 0

0 1 0

0 0 1

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

1 1 0

1 1 0

0 0 1

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

2 2 0

2 2 0

0 0 1

ℎ11 = ℎ10 + ℎ20 =

ℎ21 = ℎ10 + ℎ20 =

ℎ12 = ℎ11 + ℎ21 =

ℎ22 = ℎ11 + ℎ21 =

1st iteration

2nd iteration

Initial state

ℎ10 =

ℎ20 =

CS224W Lecture 5 (skip Lecture 4)

© 2021. Ng Yen Kaow

Embeddings by adding neighbors
 To cluster nodes in a

graph, will it work if we
1. Start with a unique

feature for each
node, and

2. Repeatedly add up
neighboring features,
and

3. Finally, cluster the
resultant features
with some method
like k-means?

Let’s try with karate club network

Based on https://tkipf.github.io/graph-convolutional-networks/

© 2021. Ng Yen Kaow

Embeddings by adding neighbors
 Karate club

1st iteration

2nd iteration

Initial 3rd iteration

4th iteration

5th iteration

(converged)
(number of clusters determined with silhouette method)

© 2021. Ng Yen Kaow

Adding neighbors w/ linear algebra
 Let matrix 𝐻𝐻 be a matrix where each row is a

node and each column is a feature
 𝐻𝐻 have dim 𝑉𝑉 × 𝑑𝑑

 Let 𝐴𝐴 be an adjacency matrix
 Let �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼 where 𝐼𝐼 is the identify matrix

 Then, sum is simply �̂�𝐴𝐻𝐻
𝑎𝑎 𝑏𝑏 𝑐𝑐

…
…

ℎ1
ℎ2
ℎ3

=
𝑎𝑎ℎ1 + 𝑏𝑏ℎ2 + 𝑐𝑐ℎ3

…
…

e.g.
1 1 0
1 1 0
0 0 1

ℎ1
ℎ2
ℎ3

=
ℎ1 + ℎ2
ℎ1 + ℎ2
ℎ3

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

CS224W Lecture 6.3

Permutation invariant so
that the outcome is the
same regardless of node
order within matrix

© 2021. Ng Yen Kaow

Adding neighbors w/ linear algebra
 Let matrix 𝐻𝐻 be a matrix where each row is a

node and each column is a feature
 𝐻𝐻 have dim 𝑉𝑉 × 𝑑𝑑

 Let 𝐴𝐴 be an adjacency matrix
 Let �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼 where 𝐼𝐼 is the identify matrix

 Further normalize each row of �̂�𝐴 to sum to 1
1/3 1/3 1/3

…
…

ℎ1
ℎ2
ℎ3

=
ℎ1 + ℎ2 + ℎ3 /3

…
…

e.g.
.5 .5 0
.5 .5 0
0 0 1

ℎ1
ℎ2
ℎ3

=
(ℎ1+ℎ2)/2
(ℎ1+ℎ2)/2

ℎ3

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

Note that
normalize

does the same
thing as mean

© 2021. Ng Yen Kaow

Adding neighbors w/ linear algebra
 Let matrix 𝐻𝐻 be a matrix where each row is a

node and each column is a feature
 𝐻𝐻 have dim 𝑉𝑉 × 𝑑𝑑

 Let 𝐴𝐴 be an adjacency matrix
 Let �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼 where 𝐼𝐼 is the identify matrix

 Further normalize each row of �̂�𝐴 to sum to 1
 To perform this normalization, it suffices that we let

�̂�𝐴 ← 𝐷𝐷−1�̂�𝐴 where 𝐷𝐷 is the diagonal node degree
matrix
 In PyTorch, use

torch.nn.functional.normalize(A, p=1, dim=1)

 Or, use �̂�𝐴 ← 𝐷𝐷−1/2�̂�𝐴𝐷𝐷−1/2 (GCN variant)
 In PyTorch, use

D = torch.diag(torch.sum(A, 1)).inverse().sqrt()
D = torch.mm(torch.mm(D, A), D)

Normalized �̂�𝐴 is
in general not

symmetric

GCN variant is
symmetric, but

not normalized

© 2021. Ng Yen Kaow

Redo embeddings w/ 𝐷𝐷−1�̂�𝐴
 Redo karate club with normalized �̂�𝐴 ← 𝐷𝐷−1�̂�𝐴

1st iteration

2nd iterationInitial

3rd iteration

(number of clusters determined with silhouette method)

(no change)

!

k-means on �̂�𝐴𝐻𝐻

k-means on �̂�𝐴2𝐻𝐻

k-means on �̂�𝐴3𝐻𝐻

actual
separation

© 2021. Ng Yen Kaow

Redo embeddings w/ 𝐷𝐷−1/2�̂�𝐴𝐷𝐷−1/2

 Redo karate club with normalized �̂�𝐴 ← 𝐷𝐷−1/2�̂�𝐴𝐷𝐷−1/2

1st iteration: k-means on �̂�𝐴𝐻𝐻

Initial

(number of clusters determined with silhouette method)

2nd iteration: k-means on �̂�𝐴2𝐻𝐻

6th iteration: k-means on �̂�𝐴6𝐻𝐻

3th iteration: k-means on �̂�𝐴3𝐻𝐻

9th iteration: k-means on �̂�𝐴9𝐻𝐻

12th iteration: k-means on �̂�𝐴12𝐻𝐻

11th iteration: k-means on �̂�𝐴11𝐻𝐻

13th iteration: k-means on �̂�𝐴13𝐻𝐻

(converged)

© 2021. Ng Yen Kaow

Adding neighbors: evaluation
 Why did it fail without normalization

 Without normalization, feature values for the nodes of
high centrality would quickly add up, making them
distinct from the nodes of low centrality

 Why did it fail with 𝐷𝐷−1/2�̂�𝐴𝐷𝐷−1/2 (GCN variant)
 This is more complicated and is explained in the slide

titled
 How many iterations should be used?

Early (RNN-like) GNNs are iterated until convergence but they quickly ran out of favor
to Graph Convolutional Networks (GCNs) where the number of iterations is fixed as
defined by the number of convolutional layers

 Each iteration would “bunch up” neighboring features
of 1 hop away (receptive field)

 We should determine the number of iterations by the
nature of the graph

�̂�𝐴𝐻𝐻∗ = 𝐻𝐻∗ for symmetric �̂�𝐴

© 2021. Ng Yen Kaow

Nature of the graph
 The Cheeger constant (or expansion constant)

of an unweighted graph 𝐺𝐺(𝐸𝐸,𝑉𝑉) is

ℎ 𝐺𝐺 = min
𝑆𝑆⊆𝑉𝑉

𝑢𝑢,𝑣𝑣 |𝑢𝑢∈𝑆𝑆,𝑣𝑣∈ ̅𝑆𝑆
min 𝑆𝑆 , ̅𝑆𝑆

 𝑢𝑢, 𝑣𝑣 |𝑢𝑢 ∈ 𝑆𝑆, 𝑣𝑣 ∈ ̅𝑆𝑆 indicates how well vertices in 𝑆𝑆
are connected to vertices in ̅𝑆𝑆

 min 𝑆𝑆 , ̅𝑆𝑆 favors 𝑆𝑆 where 𝑆𝑆 ≈ ̅𝑆𝑆
 For weighted graphs, a similar measure called

conductance can be defined with edge weights 𝑎𝑎𝑢𝑢𝑣𝑣

𝜙𝜙 𝐺𝐺 = min
𝑆𝑆⊆𝑉𝑉

∑𝑣𝑣∈𝑆𝑆,𝑢𝑢∈�̅�𝑆 𝑎𝑎𝑣𝑣𝑢𝑢
min ∑𝑣𝑣∈𝑆𝑆,𝑢𝑢∈𝑉𝑉 𝑎𝑎𝑣𝑣𝑢𝑢 , ∑𝑣𝑣∈�̅�𝑆,𝑢𝑢∈𝑉𝑉 𝑎𝑎𝑣𝑣𝑢𝑢

Based on https://dspace.mit.edu/handle/1721.1/121660 Not in CS224W

© 2021. Ng Yen Kaow

Nature of the graph
 The Cheeger constant (or expansion constant)

of an unweighted graph 𝐺𝐺(𝐸𝐸,𝑉𝑉) is

ℎ 𝐺𝐺 = min
𝑆𝑆⊆𝑉𝑉

𝑢𝑢,𝑣𝑣 |𝑢𝑢∈𝑆𝑆,𝑣𝑣∈ ̅𝑆𝑆
min 𝑆𝑆 , ̅𝑆𝑆

 A large ℎ 𝐺𝐺 indicates a highly-connected graph
 A feature in a highly-connected graph will

propagate in the graph very quickly
 A random walk in a highly-connected graph

converges in 𝑂𝑂 log 𝑉𝑉 steps to an almost
uniform distribution (mixing time)
 Upon which the embedding of every node is

influenced almost equally by any other node

© 2021. Ng Yen Kaow

Nature of the graph
 Examine the number of steps required for the

clusters in the karate club to mix

 5 iterations/ steps suffice for nodes in the
respective clusters to influence each other equally

 The clusters are respectively of
sizes 18, 11, 5
log 18 = 4.17
log 11 = 3.46
log 5 = 2.32

© 2021. Ng Yen Kaow

Nature of the graph
 Examine the number of steps required for the

clusters in the karate club to mix

distribution 𝐻𝐻∗ (i.e. when �̂�𝐴𝐻𝐻∗ = 𝐻𝐻∗) is everywhere
constant (next slide)

 Will increasing the
number of iterations
eventually spread
the features
uniformly across the
entire karate club
graph?
 Depends on

whether the limiting

© 2021. Ng Yen Kaow

�̂�𝐴𝐻𝐻∗ = 𝐻𝐻∗ for symmetric �̂�𝐴
 If �̂�𝐴 is symmetric (and hence can be eigendecomposed),

then each application of �̂�𝐴 on 𝐻𝐻, �̂�𝐴𝐻𝐻 = 𝑈𝑈Λ𝑈𝑈⊤𝐻𝐻
 This is elaborated in the slides on the spectral basis of GNN

 For 2 layers, �̂�𝐴2𝐻𝐻 = 𝑈𝑈Λ𝑈𝑈⊤ 𝑈𝑈Λ𝑈𝑈⊤𝐻𝐻 = 𝑈𝑈Λ2𝑈𝑈⊤𝐻𝐻
⇒ For 𝑘𝑘 layers, �̂�𝐴𝑘𝑘𝐻𝐻 = 𝑈𝑈Λ𝑘𝑘𝑈𝑈⊤𝐻𝐻
 𝜆𝜆𝑘𝑘 of larger 𝜆𝜆 becomes disproportionately large
 At large 𝑘𝑘, �̂�𝐴𝑘𝑘𝐻𝐻 is a projection of 𝐻𝐻 mainly on the

eigenvectors of the largest eigenvalues
 For the adjacency matrix �̂�𝐴 (or 𝐴𝐴), a larger eigenvalue

implies more similar values in its eigenvector
 Note that the Laplacian (𝐷𝐷 − 𝐴𝐴) or the normalized

Laplacian (𝐼𝐼 − 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2) reverses this relation

 As a result, �̂�𝐴𝑘𝑘𝐻𝐻 consist of similar features, leading to
most everything clustered together

© 2021. Ng Yen Kaow

Compared to spectral clustering
We compare �𝐷𝐷− ⁄1 2�̂�𝐴�𝐷𝐷− ⁄1 2 with 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 (Ng, Weiss, and Jordan 2001) since
they share more similarity

 Spectral clustering finds the distribution 𝑥𝑥 where

That is, 𝑥𝑥 is the eigenvector of eigenvalue 1
 For single-valued feature (𝐻𝐻 ← 𝑥𝑥) and at convergence

(�̂�𝐴𝑥𝑥 = 𝑥𝑥), our earlier GNN gives 𝑥𝑥 where
�𝐷𝐷− ⁄1 2�̂�𝐴�𝐷𝐷− ⁄1 2𝑥𝑥 = 𝑥𝑥

where �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼 and �𝐷𝐷 the corresponding degree matrix
 The resultant features, �̂�𝐴∞𝑥𝑥, are dominated by the

eigenvectors of the largest eigenvalues

 Self-loops in �̂�𝐴 shrink the spectrum of the Laplacian
⇒ Faster domination by the larger eigenvalues

(see slides for “Spectral Basis of GNN”)

𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2𝑥𝑥 = 𝑥𝑥

© 2021. Ng Yen Kaow

Adding neighbors: evaluation
 Benefits of strategy
 Simplicity
 Efficiently computed with adjacency

matrix
 Disadvantage of strategy
 Embeddings produced are of size of

the number of nodes in the graph
⇒ Learn a transformation matrix
𝑊𝑊:𝑅𝑅 𝑉𝑉 → 𝑅𝑅𝑑𝑑 for some smaller 𝑑𝑑

© 2021. Ng Yen Kaow

Transformation matrix 𝑊𝑊
 𝑊𝑊 is typically a linear transformation layer of size 𝑉𝑉 × 𝑑𝑑

where 𝑑𝑑 is the target dimensionality of the embeddings

 Combined with the adjacency matrix �̂�𝐴, we now have a
complete matrix formulation for computing embedding ℎ𝑣𝑣
of a node 𝑣𝑣 from (itself and) its neighbors, in the form of

ℎ𝑣𝑣 ← �̂�𝐴 𝑣𝑣𝐻𝐻𝑊𝑊
where
 �̂�𝐴 𝑣𝑣 is the row in �̂�𝐴 for the node 𝑣𝑣, and
 𝐻𝐻 is a matrix containing the features/embeddings of all

the nodes (of course, only the rows in 𝐻𝐻 with non-zero
entries in �̂�𝐴 𝑣𝑣 are needed for computing ℎ𝑣𝑣)

 Variations in this formula lead to various frameworks

© 2021. Ng Yen Kaow

Variations
 Message-aggregation (MSG-AGG)
 First transform features/embeddings (MSG),

then aggregate transformed embeddings (AGG)

ℎ𝑣𝑣 ← �̂�𝐴 𝑣𝑣 𝐻𝐻𝑊𝑊

 Separate computation of self and neighbors
 Exclude entry for 𝑣𝑣 from �̂�𝐴 𝑣𝑣, and let

ℎ𝑣𝑣 ← AGG �̂�𝐴 𝑣𝑣𝐻𝐻𝑊𝑊, ℎ𝑣𝑣𝑊𝑊𝑊
where AGG is, for instance, concatenation

message

aggregate

Aggregate only
neighbors Self

Learn a different
transformation
for self

Also denoted as 𝐵𝐵

© 2021. Ng Yen Kaow

Frameworks
 Graph Convolutional Network (GCN)

ℎ𝑣𝑣 ← �̂�𝐴 𝑣𝑣 𝐻𝐻𝑊𝑊 (basically just MSG-AGG)
(See Graph Fourier Transform in later slides to understand the significance of this simple framework)

 GraphSAGE
 Exclude entry for 𝑣𝑣 from �̂�𝐴 𝑣𝑣

ℎ𝑣𝑣 ← CONCAT AGG �̂�𝐴 𝑣𝑣𝐻𝐻 , ℎ𝑣𝑣 𝑊𝑊

AGG can be one of many options including MLP, LSTM, etc.

⇒ AGG is learnable

Aggregate neighbors Self

Concatenate self & aggregated neighbors

Transform

CS224W Lecture 7

(Why use these? See Graph Isomorphism Network)

© 2021. Ng Yen Kaow

Frameworks
 Graph Attention Networks (GAN)
 Instead of learning AGG, learn �̂�𝐴

 Generalize the adjacency matrix �̂�𝐴 to attention
weights 𝛬𝛬 = 𝛼𝛼𝑣𝑣𝑢𝑢

ℎ𝑣𝑣 ← �̂�𝐴 𝑣𝑣𝐻𝐻𝑊𝑊 ⇒ ℎ𝑣𝑣 ← 𝛬𝛬 𝑣𝑣𝐻𝐻𝑊𝑊

where 𝛼𝛼𝑣𝑣𝑢𝑢 = exp 𝑒𝑒𝑣𝑣𝑣𝑣
∑𝑥𝑥∈𝑁𝑁 𝑣𝑣 exp 𝑒𝑒𝑣𝑣𝑥𝑥

, and

𝑒𝑒𝑣𝑣𝑢𝑢 is a measure of how related 𝑢𝑢 and 𝑣𝑣 are
 𝑒𝑒𝑣𝑣𝑢𝑢 is usually computed as LINEAR CONCAT ℎ𝑣𝑣𝑊𝑊, ℎ𝑢𝑢𝑊𝑊

 Do not confuse with Generative Adversarial Networks which is for generating anime pics

 Implemented in PyTorch Geometric (PyG) as GCNConv
(GCN), SAGEConv (GraphSAGE), and GATConv (GAN)
 See https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

© 2021. Ng Yen Kaow

Frameworks
 Message Passing Neural Network (MPNN)

 Involve 𝑁𝑁(𝑣𝑣) in the transformation 𝑊𝑊 for 𝑣𝑣
ℎ𝑣𝑣 ← �̂�𝐴 𝑣𝑣𝐻𝐻𝑊𝑊

⇒ ℎ𝑣𝑣 ← 𝐻𝐻⊕𝑢𝑢∈𝑁𝑁 𝑣𝑣 𝜙𝜙 ℎ𝑣𝑣,ℎ𝑢𝑢
This change allows us to incorporate edge features in
the embedding

⇒ ℎ𝑣𝑣 ← 𝐻𝐻⊕𝑢𝑢∈𝑁𝑁 𝑣𝑣 𝜙𝜙 ℎ𝑣𝑣,ℎ𝑢𝑢, 𝑒𝑒𝑣𝑣𝑢𝑢
 How to compute 𝜙𝜙 ℎ𝑣𝑣 , ℎ𝑢𝑢, 𝑒𝑒𝑣𝑣𝑢𝑢 algebraically?

 Let edge features be in a 3D matrix 𝐸𝐸
 Then, �̂�𝐴 𝑣𝑣𝐻𝐻 and �̂�𝐴 𝑣𝑣 𝐸𝐸 𝑣𝑣 gives us two matrices with matching rows

(each row corresponding to ℎ𝑢𝑢 and 𝑒𝑒𝑣𝑣𝑢𝑢 respectively)
 Concatenate �̂�𝐴 𝑣𝑣𝐻𝐻 and �̂�𝐴 𝑣𝑣 𝐸𝐸 𝑣𝑣 and give as input to an NN

 A similar framework, Principal Neighborhood Aggregation (PNAConv),
is implemented in PyG (these frameworks are not discussed in CS224W)

© 2021. Ng Yen Kaow

In practical use
 At this point we have not mentioned

activation function or other elements of DL
 For activation function just let ℎ𝑣𝑣 ← 𝜎𝜎 ℎ𝑣𝑣
 Mix and match as you like

 Embeddings can be used for many
downstream tasks
 We have earlier used k-means for clustering

the final output
 Better performed by constructing a neural

network directly with the GNN layers

© 2021. Ng Yen Kaow

In practical use
 Adding graph elements
 Features

 Similar to feature engineering
 Virtual nodes

 Connecting all the nodes in a sparse but apparent
subgraph to a virtual node will allow those nodes to
better communicate

 Virtual edges
 Create new graph by systematically adding edges
 Example: Given a bipartite graph, breaking the graph into two

of only nodes of the same type is good for some analyses
 Let 𝐴𝐴 be the adjacency matrix of the bipartite graph 𝐺𝐺
 𝐴𝐴2 then gives the number of paths of distance 2 between nodes in 𝐺𝐺
⇒ an adjacency matrix between nodes of the same type
⇒ allows us to separate 𝐺𝐺 into two graphs, each of same node type

 𝐴𝐴 + 𝐴𝐴2 can form an adjacency matrix with heterogeneous edges
CS224W Lecture 8

© 2021. Ng Yen Kaow

Training GNNs
 Using node embeddings as input to a prediction

function
 Embedding of 1 node can be used directly
 Embeddings of 2 nodes can be

 Concatenated to form an edge embedding
 Projected on each other to get their similarity

 Embeddings of nodes of the entire graph can be
 Summed, averaged, searched for max/min, etc.
 Clustered, then the clusters summed, average,

etc., in a hierarchical fashion
 Edge embeddings from edge features are also

possible, though not discussed in CS224W
 The framework Node and Edge features in graph

Neural Networks (NENN) (not yet in PyG)

	Graph Neural Networks Demystified
	Embeddings
	Obtaining embeddings
	Task-independent embeddings
	Embeddings by adding neighbors
	Embeddings by adding neighbors
	Embeddings by adding neighbors
	Adding neighbors w/ linear algebra
	Adding neighbors w/ linear algebra
	Adding neighbors w/ linear algebra
	Redo embeddings w/ 𝐷 −1 𝐴
	Redo embeddings w/ 𝐷 −1/2 𝐴 𝐷 −1/2
	Adding neighbors: evaluation
	Nature of the graph
	Nature of the graph
	Nature of the graph
	Nature of the graph
	 𝐴 𝐻 ∗ = 𝐻 ∗ for symmetric 𝐴
	Compared to spectral clustering
	Adding neighbors: evaluation
	Transformation matrix 𝑊
	Variations
	Frameworks
	Frameworks
	Frameworks
	In practical use
	In practical use
	Training GNNs

