Graph Neural Networks Demystified

An overview of the essential concepts in Stanford CS224W (Lectures 1~8) with only oversimplified examples

Ng Yen Kaow

Embeddings

\square Relatively small vectors associated with each object where similar objects have similar embeddings
\square Using the embeddings of graph elements, various tasks can be performed

- Cluster nodes in a graph
- Predict properties of a node
- Predict if two nodes may be connected
- Classify entire graphs
\square To perform each task, use the embedding with a suitable ML method
- e.g. clustering can be performed with k-means

Obtaining embeddings

- Embeddings can be formed with or learned from features
- Node-level features
- Degree
- Centrality (eigenvector/ betweenness/ closeness)
- Clustering coefficient
- Graphlets
- Structure-based features
- Link-level features
- Distance-based features
- Local/global neighborhood overlap
- Graph-level features
- Graph kernels
- Task-independent embeddings can be learned from unsupervised learning

Task-independent embeddings

\square Unsupervised extraction by random walks

- DeepWalk
- Estimate pairwise distance between nodes (hence their co-occurrence probability)
- Usable for finding product relatedness in recommender
$\square \quad$ Node embeddings

1. Estimate node distances with random walks
2. Train a neural network (with node input and embedding output) such that distances between embeddings agree with estimated distances

- Anonymous Walk
\square Embeddings for entire graphs
- Simpler method: just add up neighbors

Embeddings by adding neighbors

\square Sum up the features of (self and) neighbor nodes

- Features of nodes in close proximity will become similar

Example: Let h_{i}^{j} denote features of node i at iteration j and let $h_{1}^{0}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$, $h_{2}^{0}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$, and $h_{3}^{0}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$

Initial state

- $h_{1} \equiv h_{2}$ after only 1 iteration

Embeddings by adding neighbors

\square To cluster nodes in a graph, will it work if we

1. Start with a unique feature for each node, and
2. Repeatedly add up neighboring features, and
3. Finally, cluster the resultant features with some method

Let's try with karate club network like k-means?

Embeddings by adding neighbors

- Karate club

$2^{\text {nd }}$ iteration

Adding neighbors w/ linear algebra

\square Let matrix H be a matrix where each row is a node and each column is a feature

- H have $\operatorname{dim}|V| \times d$
\square Let A be an adjacency matrix
- Let $\hat{A}=A+I$ where I is the identify matrix
\square Then, sum is simply $\hat{A} H$

$$
\left(\begin{array}{ccc}
a & b & c \\
& \cdots & \\
& \cdots & \left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\binom{a h_{1}+b h_{2}+c h_{3}}{\cdots}\left(\begin{array}{l}
\text { same regardless of node } \\
\text { order within matrix }
\end{array}\right. \\
\hline \cdots
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\left(\begin{array}{c}
h_{1}+h_{2} \\
h_{1}+h_{2} \\
h_{3}
\end{array}\right)
$$

Permutation invariant so that the outcome is the
e.g.

[^0]正

Adding neighbors w/ linear algebra

\square Let matrix H be a matrix where each row is a node and each column is a feature

- H have $\operatorname{dim}|V| \times d$
\square Let A be an adjacency matrix
- Let $\hat{A}=A+I$ where I is the identify matrix
\square Further normalize each row of \hat{A} to sum to 1

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
& \ldots & \\
\ldots
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\binom{\left(h_{1}+h_{2}+h_{3}\right) / 3}{\ldots} \begin{array}{c}
\text { Note that } \\
\text { normalize } \\
\text { doesthesame } \\
\text { thing as mean }
\end{array} \\
& \text { e.g. } \\
& v_{2} \quad\left(\begin{array}{lll}
.5 & .5 & 0 \\
.5 & .5 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=\left(\begin{array}{c}
\left(h_{1}+h_{2}\right) / 2 \\
\left(h_{1}+h_{2}\right) / 2 \\
h_{3}
\end{array}\right)
\end{aligned}
$$

Adding neighbors w/ linear algebra

\square Let matrix H be a matrix where each row is a node and each column is a feature

- H have dim $|V| \times d$
\square Let A be an adjacency matrix
- Let $\hat{A}=A+I$ where I is the identify matrix
\square Further normalize each row of \hat{A} to sum to 1
- To perform this normalization, it suffices that we let $\hat{A} \leftarrow D^{-1} \hat{A}$ where D is the diagonal node degree
matrix
$\square \quad$ In PyTorch, use
torch.nn.functional.normalize(A, p=1, dim=1)

Normalized \hat{A} is in general not symmetric

- Or, use $\hat{A} \leftarrow D^{-1 / 2} \hat{A} D^{-1 / 2}$ (GCN variant)
- In PyTorch, use
$D=$ torch.diag(torch.sum(A, 1)).inverse().sqrt()
D = torch.mm(torch.mm(D, A), D)

GCN variant is symmetric, but not normalized

Redo embeddings w/ $D^{-1} \hat{A}$

- Redo karate club with normalized $\hat{A} \leftarrow D^{-1} \hat{A}$

Redo embeddings w/ $D^{-1 / 2} \hat{A} D^{-1 / 2}$

\square Redo karate club with normalized $\hat{A} \leftarrow D^{-1 / 2} \hat{A} D^{-1 / 2}$

$1^{\text {st }}$ iteration: k-means on $\hat{A} H$

$2^{\text {nd }}$ iteration: k-means on $\hat{A}^{2} H$

9th iteration: k-means on $\hat{A}^{9} H$

13 th iteration: k-means on $\hat{A}^{13} H$

(converged)
© 2021. Ng Yen Kaow
(number of clusters determined with silhouette method)

Adding neighbors: evaluation

\square Why did it fail without normalization

- Without normalization, feature values for the nodes of high centrality would quickly add up, making them distinct from the nodes of low centrality
\square Why did it fail with $D^{-1 / 2} \hat{A} D^{-1 / 2}$ (GCN variant)
- This is more complicated and is explained in the slide titled $\hat{A} H^{*}=H^{*}$ for symmetric \hat{A}
- How many iterations should be used?

Early (RNN-like) GNNs are iterated until convergence but they quickly ran out of favor to Graph Convolutional Networks (GCNs) where the number of iterations is fixed as defined by the number of convolutional layers

- Each iteration would "bunch up" neighboring features of 1 hop away (receptive field)
- We should determine the number of iterations by the nature of the graph

Nature of the graph

\square The Cheeger constant (or expansion constant) of an unweighted graph $G(E, V)$ is

$$
h(G)=\min _{S \subseteq V} \frac{|\{(u, v) \mid u \in S, v \in \bar{S}\}|}{\min (|S|,|\bar{S}|)}
$$

- $|\{(u, v) \mid u \in S, v \in \bar{S}\}|$ indicates how well vertices in S are connected to vertices in \bar{S}
- $\min (|S|,|\bar{S}|)$ favors S where $|S| \approx|\bar{S}|$
- For weighted graphs, a similar measure called conductance can be defined with edge weights ($a_{u v}$)

$$
\phi(G)=\min _{S \subseteq V} \frac{\sum_{v \in S, u \in \bar{S}} a_{v u}}{\min \left(\sum_{v \in S, u \in V} a_{v u}, \sum_{v \in \bar{S}, u \in V} a_{v u}\right)}
$$

Nature of the graph

\square The Cheeger constant (or expansion constant) of an unweighted graph $G(E, V)$ is

$$
h(G)=\min _{S \subseteq V} \frac{|\{(u, v) \mid u \in S, v \in \bar{S}\}|}{\min (|S|,|\bar{S}|)}
$$

\square A large $h(G)$ indicates a highly-connected graph

- A feature in a highly-connected graph will propagate in the graph very quickly
- A random walk in a highly-connected graph converges in $O(\log |V|)$ steps to an almost uniform distribution (mixing time)
\square Upon which the embedding of every node is influenced almost equally by any other node

Nature of the graph

\square Examine the number of steps required for the clusters in the karate club to mix
\square The clusters are respectively of sizes $18,11,5$

$$
\log (18)=4.17
$$

$$
\log (11)=3.46
$$

$$
\log (5)=2.32
$$

- 5 iterations/ steps suffice for nodes in the respective clusters to influence each other equally

Nature of the graph

\square Examine the number of steps required for the clusters in the karate club to mix
\square Will increasing the number of iterations eventually spread the features uniformly across the entire karate club graph?

\square Depends on
whether the limiting distribution H^{*} (i.e. when $\hat{A} H^{*}=H^{*}$) is everywhere constant (next slide)

$\hat{A} H^{*}=H^{*}$ for symmetric \hat{A}

\square If \hat{A} is symmetric (and hence can be eigendecomposed), then each application of \hat{A} on $H, \hat{A} H=U \Lambda U^{\top} H$

This is elaborated in the slides on the spectral basis of GNN
$\square \quad$ For 2 layers, $\hat{A}^{2} H=U \Lambda U^{\top}\left(U \Lambda U^{\top} H\right)=U \Lambda^{2} U^{\top} H$
\Rightarrow For k layers, $\hat{A}^{k} H=U \Lambda^{k} U^{\top} H$

- λ^{k} of larger λ becomes disproportionately large
- At large $k, \hat{A}^{k} H$ is a projection of H mainly on the eigenvectors of the largest eigenvalues
\square For the adjacency matrix \hat{A} (or A), a larger eigenvalue implies more similar values in its eigenvector Note that the Laplacian $(D-A)$ or the normalized Laplacian ($I-D^{-1 / 2} A D^{-1 / 2}$) reverses this relation
\square As a result, $\hat{A}^{k} H$ consist of similar features, leading to most everything clustered together

Compared to spectral clustering

We compare $\widehat{D}^{-1 / 2} \widehat{A} \widehat{D}^{-1 / 2}$ with $D^{-1 / 2} A D^{-1 / 2}(\mathrm{Ng}$, Weiss, and Jordan 2001) since they share more similarity
\square Spectral clustering finds the distribution x where

$$
D^{-1 / 2} A D^{-1 / 2} x=x
$$

That is, x is the eigenvector of eigenvalue 1
\square For single-valued feature $(H \leftarrow x)$ and at convergence ($\hat{A} x=x$), our earlier GNN gives x where

$$
\widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2} x=x
$$

where $\hat{A}=A+I$ and \widehat{D} the corresponding degree matrix

- The resultant features, $\hat{A}^{\infty} x$, are dominated by the eigenvectors of the largest eigenvalues
\square Self-loops in \hat{A} shrink the spectrum of the Laplacian \Rightarrow Faster domination by the larger eigenvalues (see slides for "Spectral Basis of GNN")

Adding neighbors: evaluation

\square Benefits of strategy

- Simplicity
- Efficiently computed with adjacency matrix
\square Disadvantage of strategy
- Embeddings produced are of size of the number of nodes in the graph \Rightarrow Learn a transformation matrix $W: R^{|V|} \rightarrow R^{d}$ for some smaller d

Transformation matrix W

$\square \quad W$ is typically a linear transformation layer of size $|V| \times d$ where d is the target dimensionality of the embeddings

- Combined with the adjacency matrix \hat{A}, we now have a complete matrix formulation for computing embedding h_{v} of a node v from (itself and) its neighbors, in the form of

$$
h_{v} \leftarrow(\hat{A})_{v} H W
$$

where

- ($\hat{A})_{v}$ is the row in \hat{A} for the node v, and
- H is a matrix containing the features/embeddings of all the nodes (of course, only the rows in H with non-zero entries in $(\hat{A})_{v}$ are needed for computing h_{v})

Variations in this formula lead to various frameworks

Variations

\square Message-aggregation (MSG-AGG)

- First transform features/embeddings (MSG), then aggregate transformed embeddings (AGG)

$$
h_{v} \leftarrow \underbrace{(\hat{A})_{v}^{\frac{\text { message }}{(H W)}}}_{\text {aggregate }}
$$

\square Separate computation of self and neighbors

- Exclude entry for v from $(\hat{A})_{v}$, and let
where AGG is, for instance, concatenation

Frameworks

\square Graph Convolutional Network (GCN)

$$
h_{v} \leftarrow(\hat{A})_{v}(H W) \quad \text { (basically just MSG-AGG) }
$$

(See Graph Fourier Transform in later slides to understand the significance of this simple framework)
\square GraphSAGE

- Exclude entry for v from $(\hat{A})_{v}$

AGG can be one of many options including MLP, LSTM, etc.
\Rightarrow AGG is learnable
(Why use these? See Graph Isomorphism Network)

Frameworks

\square Graph Attention Networks (GAN)

- Instead of learning AGG, learn \hat{A}
\square Generalize the adjacency matrix \hat{A} to attention weights $\Lambda=\left(\alpha_{v u}\right)$

$$
h_{v} \leftarrow(\hat{A})_{v} H W \Rightarrow h_{v} \leftarrow(\Lambda)_{v} H W
$$

where $\alpha_{v u}=\frac{\exp \left(e_{v u}\right)}{\sum_{x \in N(v)} \exp \left(e_{v x}\right)}$, and
$e_{v u}$ is a measure of how related u and v are

- $e_{v u}$ is usually computed as $\operatorname{LINEAR}\left(\operatorname{CONCAT}\left(h_{v} W, h_{u} W\right)\right)$
- Do not confuse with Generative Adversarial Networks which is for generating anime pics
- Implemented in PyTorch Geometric (PyG) as GCNConv (GCN), SAGEConv (GraphSAGE), and GATConv (GAN)

See https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Frameworks

\square Message Passing Neural Network (MPNN)

- Involve $N(v)$ in the transformation W for v

$$
\begin{aligned}
& h_{v} \leftarrow(\hat{A})_{v} H W \\
\Rightarrow & h_{v} \leftarrow H \bigoplus_{u \in N(v)} \phi\left(h_{v}, h_{u}\right)
\end{aligned}
$$

This change allows us to incorporate edge features in the embedding

$$
\Rightarrow h_{v} \leftarrow H \bigoplus_{u \in N(v)} \phi\left(h_{v}, h_{u}, e_{v u}\right)
$$

- How to compute $\phi\left(h_{v}, h_{u}, e_{v u}\right)$ algebraically?
- Let edge features be in a 3D matrix E
- Then, $(\hat{A})_{v} H$ and $(\hat{A})_{v}(E)_{v}$ gives us two matrices with matching rows (each row corresponding to h_{u} and $e_{v u}$ respectively)
- Concatenate $(\hat{A})_{v} H$ and $(\hat{A})_{v}(E)_{v}$ and give as input to an NN
$\square \quad$ A similar framework, Principal Neighborhood Aggregation (PNAConv), is implemented in PyG (these frameworks are not discussed in CS224W)

In practical use
\square At this point we have not mentioned activation function or other elements of DL

- For activation function just let $h_{v} \leftarrow \sigma\left(h_{v}\right)$
- Mix and match as you like
\square Embeddings can be used for many
 downstream tasks
- We have earlier used k-means for clustering the final output
- Better performed by constructing a neural network directly with the GNN layers

In practical use

\square Adding graph elements

- Features
\square Similar to feature engineering
- Virtual nodes
- Connecting all the nodes in a sparse but apparent subgraph to a virtual node will allow those nodes to better communicate
- Virtual edges
$\square \quad$ Create new graph by systematically adding edges Example: Given a bipartite graph, breaking the graph into two of only nodes of the same type is good for some analyses
- Let A be the adjacency matrix of the bipartite graph G
- A^{2} then gives the number of paths of distance 2 between nodes in G
\Rightarrow an adjacency matrix between nodes of the same type
\Rightarrow allows us to separate G into two graphs, each of same node type
- $A+A^{2}$ can form an adjacency matrix with heterogeneous edges

Training GNNs

\square Using node embeddings as input to a prediction function

- Embedding of 1 node can be used directly
- Embeddings of 2 nodes can be
$\square \quad$ Concatenated to form an edge embedding
- Projected on each other to get their similarity
- Embeddings of nodes of the entire graph can be
\square Summed, averaged, searched for max/min, etc.
\square Clustered, then the clusters summed, average, etc., in a hierarchical fashion
\square Edge embeddings from edge features are also possible, though not discussed in CS224W
- The framework Node and Edge features in graph Neural Networks (NENN) (not yet in PyG)

[^0]: 都

