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Graph Neural Networks 
Demystified

Ng Yen Kaow

An overview of the essential concepts in Stanford CS224W (Lectures 1~8) 
with only oversimplified examples
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Embeddings
 Relatively small vectors associated with each 

object where similar objects have similar 
embeddings

 Using the embeddings of graph elements, various 
tasks can be performed
 Cluster nodes in a graph
 Predict properties of a node
 Predict if two nodes may be connected
 Classify entire graphs

 To perform each task, use the embedding with a 
suitable ML method
 e.g. clustering can be performed with k-means

CS224W Lecture 1



© 2021. Ng Yen Kaow

Obtaining embeddings
 Embeddings can be formed with or learned from features

 Node-level features
 Degree
 Centrality (eigenvector/ betweenness/ closeness)
 Clustering coefficient
 Graphlets
 Structure-based features

 Link-level features
 Distance-based features
 Local/global neighborhood overlap

 Graph-level features
 Graph kernels

 Task-independent embeddings can be learned from 
unsupervised learning

CS224W Lecture 2
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Task-independent embeddings
 Unsupervised extraction by random walks
 DeepWalk

 Estimate pairwise distance between nodes (hence 
their co-occurrence probability)
 Usable for finding product relatedness in recommender

 Node embeddings
1. Estimate node distances with random walks
2. Train a neural network (with node input and 

embedding output) such that distances between 
embeddings agree with estimated distances

 Anonymous Walk
 Embeddings for entire graphs

 Simpler method: just add up neighbors
CS224W Lecture 3
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Embeddings by adding neighbors
 Sum up the features of (self and) neighbor nodes

 Features of nodes in close proximity will become similar
Example: Let ℎ𝑖𝑖

𝑗𝑗 denote features of node 𝑖𝑖 at iteration 𝑗𝑗 and let ℎ10 = 1 0 0 , 
ℎ20 = 0 1 0 , and ℎ30 = 0 0 1

 ℎ1 ≡ ℎ2 after only 1 iteration

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

1 0 0

0 1 0

0 0 1

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

1 1 0

1 1 0

0 0 1

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

2 2 0

2 2 0

0 0 1

ℎ11 = ℎ10 + ℎ20 =

ℎ21 = ℎ10 + ℎ20 =

ℎ12 = ℎ11 + ℎ21 =

ℎ22 = ℎ11 + ℎ21 =

1st iteration

2nd iteration

Initial state

ℎ10 =

ℎ20 =

CS224W Lecture 5 (skip Lecture 4)
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Embeddings by adding neighbors
 To cluster nodes in a 

graph, will it work if we 
1. Start with a unique 

feature for each 
node, and

2. Repeatedly add up 
neighboring features, 
and

3. Finally, cluster the 
resultant features 
with some method 
like k-means?

Let’s try with karate club network

Based on https://tkipf.github.io/graph-convolutional-networks/
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Embeddings by adding neighbors
 Karate club

1st iteration

2nd iteration

Initial 3rd iteration

4th iteration

5th iteration

(converged)
(number of clusters determined with silhouette method)
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Adding neighbors w/ linear algebra
 Let matrix 𝐻𝐻 be a matrix where each row is a 

node and each column is a feature
 𝐻𝐻 have dim 𝑉𝑉 × 𝑑𝑑

 Let 𝐴𝐴 be an adjacency matrix
 Let 𝐴̂𝐴 = 𝐴𝐴 + 𝐼𝐼 where 𝐼𝐼 is the identify matrix 

 Then, sum is simply 𝐴̂𝐴𝐻𝐻
𝑎𝑎 𝑏𝑏 𝑐𝑐

…
…

ℎ1
ℎ2
ℎ3

=
𝑎𝑎ℎ1 + 𝑏𝑏ℎ2 + 𝑐𝑐ℎ3

…
…

e.g.
1 1 0
1 1 0
0 0 1

ℎ1
ℎ2
ℎ3

=
ℎ1 + ℎ2
ℎ1 + ℎ2
ℎ3

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

CS224W Lecture 6.3

Permutation invariant so 
that the outcome is the 
same regardless of node
order within matrix
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Adding neighbors w/ linear algebra
 Let matrix 𝐻𝐻 be a matrix where each row is a 

node and each column is a feature
 𝐻𝐻 have dim 𝑉𝑉 × 𝑑𝑑

 Let 𝐴𝐴 be an adjacency matrix
 Let 𝐴̂𝐴 = 𝐴𝐴 + 𝐼𝐼 where 𝐼𝐼 is the identify matrix 

 Further normalize each row of 𝐴̂𝐴 to sum to 1
1/3 1/3 1/3

…
…

ℎ1
ℎ2
ℎ3

=
ℎ1 + ℎ2 + ℎ3 /3

…
…

e.g.
.5 .5 0
.5 .5 0
0 0 1

ℎ1
ℎ2
ℎ3

=
(ℎ1+ℎ2)/2
(ℎ1+ℎ2)/2

ℎ3

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

Note that 
normalize

does the same 
thing as mean
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Adding neighbors w/ linear algebra
 Let matrix 𝐻𝐻 be a matrix where each row is a 

node and each column is a feature
 𝐻𝐻 have dim 𝑉𝑉 × 𝑑𝑑

 Let 𝐴𝐴 be an adjacency matrix
 Let 𝐴̂𝐴 = 𝐴𝐴 + 𝐼𝐼 where 𝐼𝐼 is the identify matrix 

 Further normalize each row of 𝐴̂𝐴 to sum to 1
 To perform this normalization, it suffices that we let 

𝐴̂𝐴 ← 𝐷𝐷−1𝐴̂𝐴 where 𝐷𝐷 is the diagonal node degree 
matrix
 In PyTorch, use 

torch.nn.functional.normalize(A, p=1, dim=1)

 Or, use 𝐴̂𝐴 ← 𝐷𝐷−1/2𝐴̂𝐴𝐷𝐷−1/2 (GCN variant)
 In PyTorch, use

D = torch.diag(torch.sum(A, 1)).inverse().sqrt()
D = torch.mm(torch.mm(D, A), D)

Normalized 𝐴̂𝐴 is 
in general not 

symmetric

GCN variant is 
symmetric, but 

not normalized
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Redo embeddings w/ 𝐷𝐷−1𝐴̂𝐴
 Redo karate club with normalized 𝐴̂𝐴 ← 𝐷𝐷−1𝐴̂𝐴

1st iteration

2nd iterationInitial

3rd iteration

(number of clusters determined with silhouette method)

(no change)

!

k-means on 𝐴̂𝐴𝐻𝐻

k-means on 𝐴̂𝐴2𝐻𝐻

k-means on 𝐴̂𝐴3𝐻𝐻

actual 
separation
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Redo embeddings w/ 𝐷𝐷−1/2𝐴̂𝐴𝐷𝐷−1/2

 Redo karate club with normalized 𝐴̂𝐴 ← 𝐷𝐷−1/2𝐴̂𝐴𝐷𝐷−1/2

1st iteration: k-means on 𝐴̂𝐴𝐻𝐻

Initial

(number of clusters determined with silhouette method)

2nd iteration: k-means on 𝐴̂𝐴2𝐻𝐻

6th iteration: k-means on 𝐴̂𝐴6𝐻𝐻

3th iteration: k-means on 𝐴̂𝐴3𝐻𝐻

9th iteration: k-means on 𝐴̂𝐴9𝐻𝐻

12th iteration: k-means on 𝐴̂𝐴12𝐻𝐻

11th iteration: k-means on 𝐴̂𝐴11𝐻𝐻

13th iteration: k-means on 𝐴̂𝐴13𝐻𝐻

(converged)
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Adding neighbors: evaluation
 Why did it fail without normalization

 Without normalization, feature values for the nodes of 
high centrality would quickly add up, making them 
distinct from the nodes of low centrality

 Why did it fail with 𝐷𝐷−1/2𝐴̂𝐴𝐷𝐷−1/2 (GCN variant)
 This is more complicated and is explained in the slide 

titled
 How many iterations should be used?

Early (RNN-like) GNNs are iterated until convergence but they quickly ran out of favor 
to Graph Convolutional Networks (GCNs) where the number of iterations is fixed as 
defined by the number of convolutional layers

 Each iteration would “bunch up” neighboring features 
of 1 hop away (receptive field)

 We should determine the number of iterations by the 
nature of the graph

𝐴̂𝐴𝐻𝐻∗ = 𝐻𝐻∗ for symmetric 𝐴̂𝐴
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Nature of the graph
 The Cheeger constant (or expansion constant) 

of an unweighted graph 𝐺𝐺(𝐸𝐸,𝑉𝑉) is

ℎ 𝐺𝐺 = min
𝑆𝑆⊆𝑉𝑉

𝑢𝑢,𝑣𝑣 |𝑢𝑢∈𝑆𝑆,𝑣𝑣∈ ̅𝑆𝑆
min 𝑆𝑆 , ̅𝑆𝑆

 𝑢𝑢, 𝑣𝑣 |𝑢𝑢 ∈ 𝑆𝑆, 𝑣𝑣 ∈ ̅𝑆𝑆 indicates how well vertices in 𝑆𝑆
are connected to vertices in  ̅𝑆𝑆

 min 𝑆𝑆 , ̅𝑆𝑆 favors 𝑆𝑆 where 𝑆𝑆 ≈ ̅𝑆𝑆
 For weighted graphs, a similar measure called 

conductance can be defined with edge weights 𝑎𝑎𝑢𝑢𝑢𝑢

𝜙𝜙 𝐺𝐺 = min
𝑆𝑆⊆𝑉𝑉

∑𝑣𝑣∈𝑆𝑆,𝑢𝑢∈𝑆̅𝑆 𝑎𝑎𝑣𝑣𝑣𝑣
min ∑𝑣𝑣∈𝑆𝑆,𝑢𝑢∈𝑉𝑉 𝑎𝑎𝑣𝑣𝑣𝑣 , ∑𝑣𝑣∈𝑆̅𝑆,𝑢𝑢∈𝑉𝑉 𝑎𝑎𝑣𝑣𝑣𝑣

Based on https://dspace.mit.edu/handle/1721.1/121660 Not in CS224W
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Nature of the graph
 The Cheeger constant (or expansion constant) 

of an unweighted graph 𝐺𝐺(𝐸𝐸,𝑉𝑉) is

ℎ 𝐺𝐺 = min
𝑆𝑆⊆𝑉𝑉

𝑢𝑢,𝑣𝑣 |𝑢𝑢∈𝑆𝑆,𝑣𝑣∈ ̅𝑆𝑆
min 𝑆𝑆 , ̅𝑆𝑆

 A large ℎ 𝐺𝐺 indicates a highly-connected graph
 A feature in a highly-connected graph will 

propagate in the graph very quickly
 A random walk in a highly-connected graph 

converges in 𝑂𝑂 log 𝑉𝑉 steps to an almost 
uniform distribution (mixing time)
 Upon which the embedding of every node is 

influenced almost equally by any other node
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Nature of the graph
 Examine the number of steps required for the 

clusters in the karate club to mix 

 5 iterations/ steps suffice for nodes in the 
respective clusters to influence each other equally 

 The clusters are respectively of 
sizes 18, 11, 5
log 18 = 4.17
log 11 = 3.46
log 5 = 2.32
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Nature of the graph
 Examine the number of steps required for the 

clusters in the karate club to mix 

distribution 𝐻𝐻∗ (i.e. when 𝐴̂𝐴𝐻𝐻∗ = 𝐻𝐻∗) is everywhere 
constant (next slide)

 Will increasing the 
number of iterations 
eventually spread 
the features 
uniformly across the 
entire karate club 
graph?
 Depends on 

whether the limiting



© 2021. Ng Yen Kaow

𝐴̂𝐴𝐻𝐻∗ = 𝐻𝐻∗ for symmetric 𝐴̂𝐴
 If 𝐴̂𝐴 is symmetric (and hence can be eigendecomposed), 

then each application of 𝐴̂𝐴 on 𝐻𝐻, 𝐴̂𝐴𝐻𝐻 = 𝑈𝑈Λ𝑈𝑈⊤𝐻𝐻
 This is elaborated in the slides on the spectral basis of GNN 

 For 2 layers, 𝐴̂𝐴2𝐻𝐻 = 𝑈𝑈Λ𝑈𝑈⊤ 𝑈𝑈Λ𝑈𝑈⊤𝐻𝐻 = 𝑈𝑈Λ2𝑈𝑈⊤𝐻𝐻
⇒ For 𝑘𝑘 layers, 𝐴̂𝐴𝑘𝑘𝐻𝐻 = 𝑈𝑈Λ𝑘𝑘𝑈𝑈⊤𝐻𝐻
 𝜆𝜆𝑘𝑘 of larger 𝜆𝜆 becomes disproportionately large  
 At large 𝑘𝑘, 𝐴̂𝐴𝑘𝑘𝐻𝐻 is a projection of 𝐻𝐻 mainly on the 

eigenvectors of the largest eigenvalues
 For the adjacency matrix 𝐴̂𝐴 (or 𝐴𝐴), a larger eigenvalue 

implies more similar values in its eigenvector
 Note that the Laplacian (𝐷𝐷 − 𝐴𝐴) or the normalized 

Laplacian (𝐼𝐼 − 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2) reverses this relation

 As a result, 𝐴̂𝐴𝑘𝑘𝐻𝐻 consist of similar features, leading to 
most everything clustered together
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Compared to spectral clustering
We compare �𝐷𝐷− ⁄1 2𝐴̂𝐴�𝐷𝐷− ⁄1 2 with 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 (Ng, Weiss, and Jordan 2001) since 
they share more similarity

 Spectral clustering finds the distribution 𝑥𝑥 where 

That is, 𝑥𝑥 is the eigenvector of eigenvalue 1
 For single-valued feature (𝐻𝐻 ← 𝑥𝑥) and at convergence

(𝐴̂𝐴𝑥𝑥 = 𝑥𝑥), our earlier GNN gives 𝑥𝑥 where
�𝐷𝐷− ⁄1 2𝐴̂𝐴�𝐷𝐷− ⁄1 2𝑥𝑥 = 𝑥𝑥

where 𝐴̂𝐴 = 𝐴𝐴 + 𝐼𝐼 and �𝐷𝐷 the corresponding degree matrix
 The resultant features, 𝐴̂𝐴∞𝑥𝑥, are dominated by the 

eigenvectors of the largest eigenvalues

 Self-loops in 𝐴̂𝐴 shrink the spectrum of the Laplacian
⇒ Faster domination by the larger eigenvalues 

(see slides for “Spectral Basis of GNN”)

𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2𝑥𝑥 = 𝑥𝑥
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Adding neighbors: evaluation
 Benefits of strategy
 Simplicity
 Efficiently computed with adjacency 

matrix
 Disadvantage of strategy
 Embeddings produced are of size of 

the number of nodes in the graph
⇒ Learn a transformation matrix
𝑊𝑊:𝑅𝑅 𝑉𝑉 → 𝑅𝑅𝑑𝑑 for some smaller 𝑑𝑑
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Transformation matrix 𝑊𝑊
 𝑊𝑊 is typically a linear transformation layer of size 𝑉𝑉 × 𝑑𝑑

where 𝑑𝑑 is the target dimensionality of the embeddings

 Combined with the adjacency matrix 𝐴̂𝐴, we now have a 
complete matrix formulation for computing embedding ℎ𝑣𝑣
of a node 𝑣𝑣 from (itself and) its neighbors, in the form of

ℎ𝑣𝑣 ← 𝐴̂𝐴 𝑣𝑣𝐻𝐻𝐻𝐻
where
 𝐴̂𝐴 𝑣𝑣 is the row in 𝐴̂𝐴 for the node 𝑣𝑣, and
 𝐻𝐻 is a matrix containing the features/embeddings of all 

the nodes (of course, only the rows in 𝐻𝐻 with non-zero 
entries in 𝐴̂𝐴 𝑣𝑣 are needed for computing ℎ𝑣𝑣)

 Variations in this formula lead to various frameworks
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Variations
 Message-aggregation (MSG-AGG) 
 First transform features/embeddings (MSG), 

then aggregate transformed embeddings (AGG)

ℎ𝑣𝑣 ← 𝐴̂𝐴 𝑣𝑣 𝐻𝐻𝐻𝐻

 Separate computation of self and neighbors
 Exclude entry for 𝑣𝑣 from 𝐴̂𝐴 𝑣𝑣, and let

ℎ𝑣𝑣 ← AGG 𝐴̂𝐴 𝑣𝑣𝐻𝐻𝐻𝐻, ℎ𝑣𝑣𝑊𝑊𝑊
where AGG is, for instance, concatenation

message

aggregate

Aggregate only 
neighbors Self

Learn a different 
transformation 
for self

Also denoted as 𝐵𝐵
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Frameworks
 Graph Convolutional Network (GCN)

ℎ𝑣𝑣 ← 𝐴̂𝐴 𝑣𝑣 𝐻𝐻𝐻𝐻 (basically just MSG-AGG)
(See Graph Fourier Transform in later slides to understand the significance of this simple framework)

 GraphSAGE
 Exclude entry for 𝑣𝑣 from 𝐴̂𝐴 𝑣𝑣

ℎ𝑣𝑣 ← CONCAT AGG 𝐴̂𝐴 𝑣𝑣𝐻𝐻 , ℎ𝑣𝑣 𝑊𝑊

AGG can be one of many options including MLP, LSTM, etc. 

⇒ AGG is learnable

Aggregate neighbors Self

Concatenate self & aggregated neighbors

Transform

CS224W Lecture 7

(Why use these? See Graph Isomorphism Network)
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Frameworks
 Graph Attention Networks (GAN)
 Instead of learning AGG, learn 𝐴̂𝐴

 Generalize the adjacency matrix 𝐴̂𝐴 to attention 
weights 𝛬𝛬 = 𝛼𝛼𝑣𝑣𝑣𝑣

ℎ𝑣𝑣 ← 𝐴̂𝐴 𝑣𝑣𝐻𝐻𝐻𝐻 ⇒ ℎ𝑣𝑣 ← 𝛬𝛬 𝑣𝑣𝐻𝐻𝐻𝐻

where 𝛼𝛼𝑣𝑣𝑣𝑣 = exp 𝑒𝑒𝑣𝑣𝑣𝑣
∑𝑥𝑥∈𝑁𝑁 𝑣𝑣 exp 𝑒𝑒𝑣𝑣𝑣𝑣

, and

𝑒𝑒𝑣𝑣𝑣𝑣 is a measure of how related 𝑢𝑢 and 𝑣𝑣 are 
 𝑒𝑒𝑣𝑣𝑣𝑣 is usually computed as LINEAR CONCAT ℎ𝑣𝑣𝑊𝑊, ℎ𝑢𝑢𝑊𝑊

 Do not confuse with Generative Adversarial Networks which is for generating anime pics

 Implemented in PyTorch Geometric (PyG) as GCNConv 
(GCN), SAGEConv (GraphSAGE), and GATConv (GAN)
 See https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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Frameworks
 Message Passing Neural Network (MPNN)

 Involve 𝑁𝑁(𝑣𝑣) in the transformation 𝑊𝑊 for 𝑣𝑣
ℎ𝑣𝑣 ← 𝐴̂𝐴 𝑣𝑣𝐻𝐻𝑊𝑊

⇒ ℎ𝑣𝑣 ← 𝐻𝐻⊕𝑢𝑢∈𝑁𝑁 𝑣𝑣 𝜙𝜙 ℎ𝑣𝑣,ℎ𝑢𝑢
This change allows us to incorporate edge features in 
the embedding

⇒ ℎ𝑣𝑣 ← 𝐻𝐻⊕𝑢𝑢∈𝑁𝑁 𝑣𝑣 𝜙𝜙 ℎ𝑣𝑣,ℎ𝑢𝑢, 𝑒𝑒𝑣𝑣𝑣𝑣
 How to compute 𝜙𝜙 ℎ𝑣𝑣 , ℎ𝑢𝑢, 𝑒𝑒𝑣𝑣𝑣𝑣 algebraically?

 Let edge features be in a 3D matrix 𝐸𝐸
 Then, 𝐴̂𝐴 𝑣𝑣𝐻𝐻 and 𝐴̂𝐴 𝑣𝑣 𝐸𝐸 𝑣𝑣 gives us two matrices with matching rows 

(each row corresponding to ℎ𝑢𝑢 and 𝑒𝑒𝑣𝑣𝑣𝑣 respectively)
 Concatenate 𝐴̂𝐴 𝑣𝑣𝐻𝐻 and 𝐴̂𝐴 𝑣𝑣 𝐸𝐸 𝑣𝑣 and give as input to an NN

 A similar framework, Principal Neighborhood Aggregation (PNAConv), 
is implemented in PyG (these frameworks are not discussed in CS224W)
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In practical use
 At this point we have not mentioned 

activation function or other elements of DL
 For activation function just let ℎ𝑣𝑣 ← 𝜎𝜎 ℎ𝑣𝑣
 Mix and match as you like

 Embeddings can be used for many 
downstream tasks
 We have earlier used k-means for clustering 

the final output
 Better performed by constructing a neural 

network directly with the GNN layers
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In practical use
 Adding graph elements
 Features

 Similar to feature engineering
 Virtual nodes

 Connecting all the nodes in a sparse but apparent 
subgraph to a virtual node will allow those nodes to 
better communicate

 Virtual edges
 Create new graph by systematically adding edges
 Example: Given a bipartite graph, breaking the graph into two 

of only nodes of the same type is good for some analyses 
 Let 𝐴𝐴 be the adjacency matrix of the bipartite graph 𝐺𝐺
 𝐴𝐴2 then gives the number of paths of distance 2 between nodes in 𝐺𝐺
⇒ an adjacency matrix between nodes of the same type
⇒ allows us to separate 𝐺𝐺 into two graphs, each of same node type

 𝐴𝐴 + 𝐴𝐴2 can form an adjacency matrix with heterogeneous edges
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Training GNNs
 Using node embeddings as input to a prediction 

function
 Embedding of 1 node can be used directly
 Embeddings of 2 nodes can be 

 Concatenated to form an edge embedding
 Projected on each other to get their similarity

 Embeddings of nodes of the entire graph can be
 Summed, averaged, searched for max/min, etc.
 Clustered, then the clusters summed, average, 

etc., in a hierarchical fashion
 Edge embeddings from edge features are also 

possible, though not discussed in CS224W
 The framework Node and Edge features in graph 

Neural Networks (NENN) (not yet in PyG)
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