Spectral Basis of GNNs
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GNN history

1997 Sperduti and Starita Supervised neural networks for the classification of structures
LeNet-5 1998

2005

2009

2010

2013

2015

2016

2017
2018

© 2022

Gori et al. A new model for learning in graph domains

Scarselli et al. The graph neural network model

Hammond et al. Wavelets on graph via spectral graph theory

Micheli Neural networks for graph: A contextual constructive approach
Gallicchio and Micheli Graph echo state networks

AlexNet (U of T) wins ILSVRC 2012

Shuman et al. The emerging field of signal processing on graphs
Bruna et al. Spectral networks and locally-connected networks on graphs

2013

ZFNet (NYU) wins ILSVRC
GoogLeNet and VGGNet wins ILSVRC 2014

Henalff et al. Deep convolutional networks on graph-structured data

2015

ResNet wins ILSVRC
Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering

Kipf and Welling Semi-supervised classification with graph convolutional networks
Atwood and Towsley Diffusion-convolutional neural networks

Niepert et al. Learning convolutional neural networks for graphs

Gilmer et al. Neural message passing for quantum chemistry

Battaglia et al. Relational inductive biases, deep learning, and graph networks

. Ng Yen Kaow

RecGNN

Graph Fourier Transform
Spectral ConvGNN
Spatial ConvGNN




GNN history (significant eras)

1997 Sperduti and Starita Supervised neural networks for the classification of structures
Lell (-5 1998

2005 Gori et al. A new model for learning in graph domains
» Theory of spectral

domain filters

» Idea of graph-based
Micheli Neural networks for graph: A contextual constructive approac convolution

2009 Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory

2010 Gallicchio and Micheli Graph echo state networks

AlexNet (U of T) wins IL C 2012

2013 Shuman et al. The emerging field of signal processing on graphs 2013
Bruna et al. Spectral networks and locally-connected networks on graphs ﬁ

ZFNet T

GoogLeNet and V

2015 Henaff et al. Deep convolutional networks on graph-structured data

e Spectral domain
filters as NNs and
their approximation
techniques

2016 Defferrard et al. Convolutional neural networks on graphs with fast loca Ty
Kipf and Welling Semi-supervised classification with graph convolutional networks
Atwood and Towsley Diffusion-convolutional neural networks N RecGNN
Niepert et al. Learning convolutional neural networks for graphs « Adding up neighbors
2017 Gilmer et al. Neural message passing for quantum chemistry is all you need

2018 Battaglia et al. Relational inductive biases, deep learning, and graph networks J\/L
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GNN history (the people behind)

1997 Sperduti and Starita Supervised neural networks for the classification of structures

[ Lecun | LeNet-5 1998

2005 Gori et al. A new model for learning in graph domains (first use of the term GNN)

2009 Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory

Micheli Neural networks for graph: A contextual constructive approach

2010 Gallicchio and Micheli Graph echo state networks

[ Sutskever+Hinton ]AIexNet (U of T) wins ILSVRC 2012

2013 Shuman et al. The emerging field of signal processing on graphs

Bruna et al. Spectral networks and locally-connected networks on graphs

2013

[ Lecun, sortof | ZENet (NYU) wins ILSVRC

GoogLeNet and VGGNet wins ILSVRC 2014

2015 Henaff et al. Deep convolutional networks on graph-structured data

2015

ResNet wins ILSVRC

2016 Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering
Kipf and Welling Semi-supervised classification with graph convolutional networks (GCN)

Atwood and Towsley Diffusion-convolutional neural networks
Niepert et al. Learning convolutional neural networks for graphs

2017 Gilmer et al. Neural message passing for quantum chemistry

RecGNN

Graph Fourier Transform
Spectral ConvGNN
Spatial ConvGNN

2018 Battaglia et al. Relational inductive biases, deep learning, and graph networks

©2022. Ng Yen Kaow




Graph Fourier transform

0 Let U be a eigenbasis of some Laplacian L

0 Then U'x is a projection of distribution x on

eigenbasis U
— U -

Ulx =

— U, -

where a; = u;x Is the prdjectibn onto y;
The projected space is };; a;i;

x and H will be used
interchangeably here

i T ] A
My X a1
— ‘Ll;-x =|as||l=x

dimension of
Fourier space

(= #eigenvectors)

©2022. Ng Yen Kaow Hammond et al. Wavelets on graphs via spectral graph theory, 2009




Graph Fourier transform

0 Let U be a eigenbasis of some Laplacian L
0 Then U'x is a projection of distribution x on

eigenbasis U
o An application of U wou

T T aq
Ux =u; U ] az] =
I :

d transform x back into x
(U110 + U0y + -

U101 + UppCy =+ ===

= [y 0y F pply + 0 = g X+ ol X e

= (Ciul)x = lx =x

Homework: prove ¥; p;u =1

©2022. Ng Yen Kaow



Graph Fourier transform

0 Let U be a eigenbasis of some Laplacian L

0 Then U'x is a projection of distribution x on
eigenbasis U

0 An application of U would transform x back into x,
U(x) = U(U"x) = x (obvious since UUT = 1)

0 Denote U'x as F(x) and Ux as F~1(x)

©2022. Ng Yen Kaow



Graph Fourier transform

o A convolution of x in the Fourier domain of a graph ¢ Is
xxg=F Y F@)OF())=UUTxO U )
where U Is the eigenbasis of some Laplacian of &,
IS some filter that works on the eigenbasis U,
and @ Is the element-wise (Hadamard) product

91 g1 0 0
0 Suppose UTg =|g,|. Let gg = diag(UTg) =10 g, O
: O 0 -

Then we can write x * ¢ = UggU "x (shown below)

Each g; weights the significance of the eigenvector y;
Je 1S 10 be inferred

aq [J1] [A191 ]

This inference task UTxQUTg = a;]@ 92| = |a292
results in the spectral : _[gl 0 ]‘al‘_algl
goU x =10 g, O0f|az|=]a292

GNNs o o -ll: :

©2022. Ng Yen Kaow Henaff et al. Deep Convolutional Networks on Graph-Structured Data, 2013



Spectral GNN

0 The spectral GNN task of learning a function f and
filter g for graph G, is to infer f and the coefficients g4,

Ja, ..., such that for each x, f(UggU "x) matches the
desired output

These GNNs work in the spectral domain as opposed
to the spatial domain of the graph

g 1S to be independent of the eigenvectors U

0 Thatis, gg(L) = go(UAUT) = Uge(A)UTx where L is some
Laplacian for ¢

o Of course, gg may turn out to be independent of A
In which case, gg Is inferred solely from the examples

0 In spectral GNNs we learn which eigenvectors to use from

examples in a supervised learning
In spectral clustering we take the eigenvectors of the slowest

growth (hence more “global”) and perform unsupervised learning
with those vectors

©2022. Ng Yen Kaow



Chebyshev approximation for U

o However, computing U is O(N3) and computing U "x is
O(N?) = expensive

0 Approximate gg with Chebyshev polynomials

K
go (L) = ggr(A) = z 0; T;(A)
1=0

where

~ 2
0 A=

A — 1 (A4« IS the largest eigenvalue)

max

o 8" € RX are Chebyshev coefficients, and

0 The polynomials T;(x) are computed with a recurrence
relation

To(x) =1, T,(x) = x (base case)
Tpy1(x) = 2x Ty(x) — Tpq ()
0 K Is the number of expansion terms

©2022. Ng Yen Kaow Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016



Chebyshev approximation for U

O

However, computing U is O(N3) and computing U " x is
O(N?) = expensive

Approximate gg with Chebyshev polynomials

K
go (L) = ggr(A) = z 0; T;(A)
1=0

Then
K
x*xgg=UgyU x=U ZHL' T;(A) |UTx
i=0
Since UT(A)UT = 2—UAUT —IUUT = 2L — |
A‘maX Amax

L—Tand |x*gg ~ Y0/ T;(L)x

Chebyshev approximation

Write [ =

/1m ax

©2022. Ng Yen Kaow



Chebyshev approximation for U

o T,, the n order coefficient of the
Chebyshev polynomials of the first kind, Is
T.,(cos8) = cosnb

m The coefficients can be obtained using the
recurrence relation
cos(n+ 1)0 + cos(n —1)8 = 2 cos O cosnb
= Trn41(x) = 2x Ty (x) — Tr—q (%)

Oth order

~m cos06 =1 = To(x) =1
1d°rger cos 160 = cos 6 =>T;(x) =x
2 Orﬁerc0529=2c0529—1 = T,(x) = 2x% — 1
'd order

B cos30 =4cos30 —3cosf = T3(x) = 4x3 — 3x

©2022. Ng Yen Kaow



Chebyshev approximation for U

0 Chebyshev approximation has x * gg = Z 0; T;(L) x
i=0
0 To compute T;(L), use the Chebyshev recurrence

To(L) =1, Ty(L) =L, Tpy1 (L) = 2 LTy (L) — Tye1 (L)

0 Denote %, = Ty (L) x, this becomes

Xnt1 = 2L Xy —Xp_q (OF Xy =2 L X — Xy 3)

K fO
0 Then,x *gg = 29; T,(L)x=[6y - 9,'{][ : ]
i=0 fK

Can be computed in O(K|E|) time from L

o Precompute the K vectors x,, ..., X, With the recurrence
relation, and learn the scalars 8|, ..., 0

©2022. Ng Yen Kaow



K =1 (GCN) approximations

0 Chebyshev approximation has x * gg = Z 0; T;(L) x
i=0

0 GCN takes K = 1 to obtain
X * ggr z96x+6?{lx=9(’)x+9{<

2 L—1 )
— X
Amax

O Since Apax = 2wWe getx * ggr = Opx + 0,1(L — Iy)x
6, and 6, are parameters to be learned

0 On the unweighted normalized Laplacian
L=D"1Y2(D—-A)D Y2 =]—-D"Y24D~1/2 this becomes
X * g = 0hx —0;D"V2AD~1/ 2«
0 Further constraint the number of parameters by letting
0, =—6;=206
x*gg =60 +D Y2AD™Y2)x | Spoimaior

©2022. Ng Yen Kaow Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, 2016



K =1 (GCN) approximations
o However, since L =1 — D~1/24p~1/2
= x gy =0(1 + D Y2AD™1/2)x = 921 — L)x
o Then, multiple applications of 8(21 — L) would result in
Ok(21 — L)*x = 0*U(2 - N U Tx
where A/U are the eigenvalues/eigenvectors for L
Since L has eigenvalues in [0,4,..] (Wwhere 1., < 21s
the largest eigenvalue of L)
= (2 — A)* has range of [(2 — 1,..,)%, 2¥]
= Exponentially large spectral coefficients at higher k

o Solution: Let A = A + I (augmentation) and normalize A
(renormalization)

Augmented adjacency matrix
That is, | x * o' = 6D~ 1/2AD~1/2x | where Eii = ZLALJ

©2022. Ng Yen Kaow Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, 2016




How legit are GCN approximations

0 Consider the two approximations of x x gg in GCN
1. S, o= 0(1+D"Y2AD1/2) or
2. SAadJ — 05_1/2AD\_1/2 (A — A + I)
where 6 Is a scalar to be learned
0 Evaluate how well they approximate x * gy In the case that
go = diag(A), that is,
x*gg = (UggU")x = (UNU)x = Lx
o First, letting 8, = —0; (case of S, ...,) or 8, = 6] would
result in x x gor having the same eigenvectors as L, that Is,
Op=—0; =>x*xgy =021 —L)x
= same eigenvectors but eigenvalues become 2 — 4
Op =601 = x*xgy = 0Lx
= same eigenvalues/ eigenvectors

©2022. Ng Yen Kaow



How legit are GCN approximations

0 Use the Karate club graph for L
0 Comparison of eigenvectors/ eigenvalues

Filter Eigenvalues Eigenvector (corr. to smallest eigenvalue in L)

-.32,-.24, -.25, -.2, -.14, -.16, -.16, -.16, -.18, -.11, ...,
-.14, -.14, -.11, -.16, -.14, -.16, -.16, -.2, -.28, -.33

2,187,1.71,1.61,1.39, ..., .5, .43, .42, .32, .24, .25, .2, .14, .16, .16, .16, .18, .11, ...,

L 1.71, 1.61, 1.58, 1.57, ..., .39, .29, .13, 0

S1iorder .39, .29 14, .14, 11, .16, 14, 16, .16, .2, .28. .33
. 1..9 77, 7. 55, .. -21 -.22, -27. 3, .23, .24, 19, 15, 16, .16, .16, .18, .13, ...
Sadj  -.31, -.42 15, .15, .13, .16, .15, .16, .16, .19, .26, .31

L and S, ., share the same eigenvectors
Eigenvectors of Sadj closely resembles those of L and 5 .,

0 Evaluate MSE(S 4, Lx) and MSE(S 4, Lx) on

randomly generated x
o MSE(S, 4%, Lx) = 0.159 (obtained at 6~0.1)
0 MSE(S,4x, Lx) = 0.166 (obtained at 6~0.07)
o MSE(random vector, Lx) = 0.413

Better than random but lackluster performance due to differences
In eigenvalues which were not remedied downstream

©2022. Ng Yen Kaow



Matrices introduced so far

Name

Eigenvalues range

A
D-A
| —D~1/24p=1/2

(or D~Y2(D — A)D~1/?)

D—l/ZAD—l/Z
I1-D 1A
I+ D~1/24p~1/2

A=1+A
D-A=MD+D-A+D=D-4A
[ —D~Y2AD~1/?

D-1/2 AH—1/2

Adjacency matrix

Laplacian
Normalized Laplacian

Normalized adjacency matrix
(Ng, Jordan, Weiss. 2001)

Random Walk Laplacian

15t order approximation
GCN (Kipf and Welling. 2016)

Augmented adjacency matrix
(Augmented) Laplacian
Normalized augmented Laplacian

Normalized augmented

adjacency matrix
GCN (Kipf and Welling. 2016)

[F-max(A), max(A4)]

(also see Bhunia et al. 2019)

[0, 2max(4)]

[0, 2]

['11 1]
(non-symmetric)

[0, 2]
[-max(4), max(A4)]

[0, 2 max(A4)]
[0, 2]

[-1, 1]

©2022. Ng Yen Kaow



Matrices introduced so far

Name

Eigenvalues range

A
D—-A

Adjacency matrix

Laplacian

[F-max(A), max(A4)]

(also see Bhunia et al. 2019)

[0, 2max(4)]

I/— D—l/ZAD—l/Z

(or D~Y2(D — A)D~1/?)

Normalized Laplacian

0, 2] A
4 )

D—1/2AD—1/2 Normalized adjacency matrix
(Ng, Jordan, Weiss. 2001) These have
I-D714 Random Walk Laplacian similar
4+ pD-1/24p-1/2 1% order approximation eigenvectors )

\L GCN (Kipf and Welling. 2016) (but dlﬁer |n
A=I1+A Augmented adjacency matrix .
D-A=D+D-(A+D=D—-A (Augmented) Laplacian e|genva|ueS)

1 — D~/ “AD~/% Normalized augmented Laplacian

D-1/2 AH—1/2

Normalized augmented

adjacency matrix
GCN (Kipf and Welling. 2016)

N J

[-1, 1]

©2022. Ng Yen Kaow



Goodness of adjacency matrices

0 The use of adjacency matrix S, = 6D~1/2AD~1/>

allows GCN to be consider as spatial GNN (Gilmer et
al. 2017)

Rewrite 0D /2AD/2x as AHW it is clear that the
method is spatial

0 S,=60D~2AD~1/? as low-pass filter wuetal. 2019)
A filter x x ¢ = UggU "x projects x into the eigenbasis U

o Adjacency matrices filters x through only the low
frequency (global) eigenvectors

Two contributing factors
1. Effects of stacking multiple layers
2. Effects of augmentation

©2022. Ng Yen Kaow



Goodness of adjacency matrices

] Sadj

= 0D~ Y?2AD~1/2 as low-pass filter (wu et al. 2019)

1. Effects of stacking multiple layers

0 As mentioned, (§adj)k =0kU@2 - N*UT
o At high k, values of (2 — A)* for 2 —A) « 1
diminish

Filter

Eigenvalues (using the Karate club graph for L)

L6
(Sl-order) °

(SA adj) o

25.41, 17.54, 15.76, 14.95, 11.26, 9.24, 8.09, 7.31, 6.1, 4.16, 2.43, 1.82, 1, 1, 1,
1,1,1,1,1, 1,1, 0.56, 0.42, 0.31, 0.21, 0.16, 0.13, 0.0/, 0.05, 0, 0, O, O

64, 42.45, 25.26, 17.59, 7.14, 6.08, 4.67/, 4., 3.45, 2.66, 2.14,1.71,1, 1,1, 1, 1,
1,1,1,1, 1, 0.51, 0.35, 0.15, 0.07, 0.05, 0.04, 0.03, 0.02, 0.01, 0.01, 0,0

1,0.52, 0.22, 0.12, 0.03, 0.02, 0.01, 0.01, 0.01, O.01, O, 0,0, 0,0,0,0O,O,O,O,
o00000000000000

©2022. Ng Yen Kaow

Eigenvalue of 1 for (S‘adj)6 corresponds to the eigenvalue
of O for L = low frequency (low-pass) filter

The same cannot be achieved with L because of the
range of eigenvalues



Goodness of adjacency matrices

0 S,= 0D~ Y2AD~1/% as low-pass filter (wuetal. 2019)
2. Effects of augmentation

o An adjacency matrix with augmentation (self-loops)
has a smaller spectrum than one without (that is,
the normalized adjacency matrix D~1/24D~1/2)

0 Theorem (wuetal. 2019). Let A (and D) be the adjacency
matrix (and degree matrix) of an undirected, weighted,
simple connected graph G. Let A=A+ yl,y > 0 and
let D be its degree matrix. Let

A1,./2, be the min/max eigenvalues of D~1/24D~1/2
1,11, be the min/max eigenvalues of D~'/24AD~1/?
Thenl, <1, <A =21, =1

= Eigenvalues of D~/?2AD~'/? range in [1,1] for some
A > -1 = No exponential increase at large k

©2022. Ng Yen Kaow



More levels of augmentation

o Extend augmentation A = A + I to more levels

Consider A, = A + yI for different values of y

o The larger the value y, the smaller the
spectrum
Theorem (Hoang and Maehara, 2019). Let
,fliy:A+yIfory>O )
D, be the degree matrix for A4,
(1) : - ~—1/2 » ~-1/2
A, be the (th Iarge§t elggnvalue of D, """A,D,
Thenfor0 <y’ <y, A% <) <A77 = 4P =1

Corollary. y >y’ = [A%, (V] is smaller than [)Lg'}), /1;1,)]

o Elgenvectors would change as well but that trend is
less well understood

©2022. Ng Yen Kaow



Eigenvalues after augmentation

0 Eigenvalues of
D 1/2/1 D ~1/2 for the
Karate club

All eigenvalues except
1 diminishes quickly
when raised to some
power

Negative eigenvalues
will dovetail between
negative and positive
as the power changes
between odd and even
numbers

o At some y value, the
range becomes close
to [0, 1]

In the present
example, y = 4.5

©2022. Ng Yen Kaow

14

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

: ~-1/2 » -1
Eigenvalues of D, "4, D,

1.0, 0.868, 0.713, ...
1.0, 0.884, 0.747, ...
1.0, 0.896, 0.774, ...
1.0, 0.906, 0.796, ...
1.0, 0.915, 0.815, ...
1.0, 0.922, 0.830, ...
1.0, 0.928, 0.843, ...
1.0, 0.933, 0.854, ...
1.0, 0.937, 0.864, ...
1.0, 0.941, 0.873, ...
1.0, 0.945, 0.881, ...
1.0, 0.948, 0.888, ...
1.0, 0.950, 0.894, ...
1.0, 0.953, 0.899, ...
1.0, 0.955, 0.904, ...
1.0, 0.957, 0.9009, ...
1.0, 0.959, 0.913, ...

, -0.715

Range

[-0.715, 1.0]
[-0.542, 1.0]
[-0.420, 1.0]
[-0.325, 1.0]
[-0.249, 1.0]
[-0.184, 1.0]
[-0.129, 1.0]
[-0.080, 1.0]
[-0.037, 1.0]
[ 0.000, 1.0]
[0.036, 1.0]
[0.067, 1.0]
[0.096, 1.0]
[0.123, 1.0]
[0.147, 1.0]
[0.170, 1.0]
[0.192, 1.0]



Eigenvectors after augmentation

0 Eigenvectors of
D 1/2/1 D ~1/2 for the
Karate club

o Deviation from
D—l/ZAD—l/Z
becomes very
significant as y
increases beyond 1

©2022. Ng Yen Kaow

14

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

Eigenvector of D,

0.320, 0.240,
0.309, 0.234,
0.299, 0.229,
0.291, 0.225,
0.283, 0.222,
0.277, 0.218,

0.253,
0.246,
0.241,
0.236,
0.231,
0.228,

1/2 » f-1/2
4y D,

of largest eigenvalue (=1)

0.196, ...,
0.194, ...
0.192, ...
0.190, ...
0.189, ..
0.188, ...

0.271, 0.216, 0.224, 0.187, ...,

-0.266, -0.213, -0.222, -0.186, ...,
-0.262, -0.211, -0.219, -0.185, ...,
-0.258, -0.209, -0.217, -0.184, ...,
-0.254, -0.207, -0.215, -0.184, ...,
-0.250, -0.206, -0.213, -0.183, ...,
-0.247, -0.204, -0.211, -0.183, ...,
-0.244, -0.203, -0.209, -0.182, ...,
-0.242, -0.202, -0.208, -0.182, ...,

0.239, 0.200, 0.206, 0.181, ...,

-0.237, -0.199, -0.205, -0.181, ...,

0.160, 0.196, 0.277, 0.330
0.161, 0.194, 0.269, 0.318
0.162, 0.192, 0.262, 0.308
0.163, 0.190, 0.255, 0.299
0.164, 0.189, 0.250, 0.291
0.164, 0.188, 0.245, 0.284
0.165, 0.187, 0.241, 0.278
-0.165, -0.186, -0.237, -0.273
-0.166, -0.185, -0.234, -0.268
-0.166, -0.184, -0.231, -0.264
-0.166, -0.184, -0.228, -0.260
-0.166, -0.183, -0.226, -0.256
-0.167, -0.183, -0.224, -0.253
-0.167, -0.182, -0.222, -0.250
-0.167, -0.182, -0.220, -0.247
0.167, 0.181, 0.218, 0.244
-0.167, -0.181, -0.216, -0.242



Eigenvectors after augmentation

0 Eigenvectors of
D 1/2/1 D ~1/2 for the
Karate club

o Deviation from
D—l/ZAD—l/Z
becomes very
significant as y
increases beyond 1
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0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

Eigenvector of D,

0.221, 0.185,
0.247, 0.198,
0.273, 0.197,
0.295, 0.190,

0.035,
0.033,
0.031,
0.029,

0.333, 0.168,
0.349, 0.157,
0.364, 0.145,
0.377, 0.134,
-0.388, -0.124, -0.028,
-0.398, -0.114, -0.029,
-0.406, -0.105, -0.030,
-0.413, -0.097, -0.031,
-0.418, -0.089, -0.031,

1/2 » f-1/2
A,D,

0.019, ...,
0.015, ...,
0.009, ...,
0.004, ...,
-0.315, -0.180, -0.028, 0.001, ...,
0.027, -0.006, ...,
0.027, -0.009, ...,
0.027,-0.012, ...,
0.027, -0.015, ...,
0.017, ...,
0.019, ...,
0.020, ...
0.021, ...
0.022, ...

-0.422, -0.082, -0.032, 0.023, ...,
0.425, 0.076, 0.033, -0.024, ...,
-0.427, -0.070, -0.034, 0.024, ...,

of smallest eigenvalue

-0.164, -0.199, 0.410, 0.473
-0.169, -0.228, 0.410, 0.501
-0.166, -0.242, 0.404, 0.524
-0.161, -0.249, 0.396, 0.545
0.154, 0.251, -0.386, -0.566
-0.147, -0.250, 0.373, 0.585
-0.141, -0.247, 0.358, 0.604
-0.135, -0.243, 0.342, 0.621
-0.129, -0.239, 0.326, 0.637
0.124, 0.234, -0.308, -0.653
0.119, 0.229, -0.291, -0.667
0.115, 0.224,-0.274, -0.680
0.110, 0.219, -0.257, -0.692
0.107, 0.214, -0.241, -0.703
0.104, 0.209, -0.226, -0.714
-0.101, -0.204, 0.211, 0.723
0.098, 0.200, -0.197, -0.733



Low-pass filter performance

0 We need to first find out how well a low-pass filter perform
01 Construct such a filter (of only low frequency eigenvectors)
Recall that x * ¢ = UgglU "x where U = [uq, ly, ... ]

g 0 0
0 geg=diag(UTg) =10 g, O
O 0 -

o Each g; weights the significance of eigenvector y;

Obtain U from decomposition of normalized Laplacian

o The eigenvalues are in the range of [0,2] where 0 has the
lowest frequency (global) and 2 has the highest frequency

o Sort eigenvectors by the eigenvalues and include only low
frequency eigenvectors in filter UIU T (details in later slide)
The use of I as gy implies that all eigenvectors included are equal
Alternatively let g; = 2 — A; so smaller eigenvalues are more significant

o Compare effects of including only low frequency eigenvectors
versus using all eigenvectors
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Low-pass filter performance

Classifier accuracy

0 Cora dataset
Nodes: 2708 scientific publications
Links: 5429
Feature: 1433 word embedding
Classes: 7

0 Procedure

Filter features with 50, 100, 150, ... eigenvectors of the lowest frequencies

Train a 2-layer MLP to classify with the filtered features

B0 4
g0 e
. "33:: ::o00oo..........,...........0.0.000000
] ®ee,
L L P
60 1 Highest accuracy achieved ....°"’iioo.otoo.....oot‘o.
with only the low frequency

0] eigenvectors
40 - Giving emphasis to low frequency

. eigenvectors increases accuracy
30 4

* i =2-4
Oge=1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700
Number of eigenvectors used in filtering
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Adjacency matrix performance

—1/2 » ~-1/2

A, l)

0 Repeat test with D, where 4, = A + yI as filter

Best performance
of low-pass filter
m ] B -

75
70 4
65 4
&0 4

207

50 -

0 Accuracies obtained comparable to low-pass filters
0 Increasing amount of augmentation y improves accuracy
0 Stacking more layers helps but only to a certain extend
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Filter with only subset eigenvectors

0 Recall from earlier slide
< 2 uix a;
a;

Ty = - = T =
U'x X ‘lex

< Uz

0 Examine the exact form of q;

- x -
Denote x = [« x, , Wwhere each x; = [xu x2  xum]
< M1 OY[X11 X12 X ,ulx*l ,ulx*z U] Xy
Ulx =< H X21 xzz T XM = Hzx*1 .sz*z T Uy Xy
= a; = [,Lll X1 .ul X2 "t [il x*M

a; IS computed from all rows and columns of x
For u/ x., to compute correctly indices of u and x,, must match

- u -

However, the ordering of uq, u,, ... in [« u, —|does not matter

o To use only some eigenvectors, simply zero out the unused
eigenvectors (corresponding a;s will become zero)
o Orjustremove those unused eigenvectors
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