Spectral Basis of GNNs

Ng Yen Kaow

GNN history

1997 Sperduti and Starita Supervised neural networks for the classification of structures
LeNet-5 1998
2005 Gori et al. A new model for learning in graph domains
2009 Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory
Micheli Neural networks for graph: A contextual constructive approach
2010 Gallicchio and Micheli Graph echo state networks
AlexNet (U of T) wins ILSVRC 2012
2013 Shuman et al. The emerging field of signal processing on graphs 2013 Bruna et al. Spectral networks and locally-connected networks on graphs

ZFNet (NYU) wins ILSVRC
GoogLeNet and VGGNet wins ILSVRC 2014
2015 Henaff et al. Deep convolutional networks on graph-structured data
ResNet wins ILSVRC
2016 Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering Kipf and Welling Semi-supervised classification with graph convolutional networks Atwood and Towsley Diffusion-convolutional neural networks Niepert et al. Learning convolutional neural networks for graphs
2017 Gilmer et al. Neural message passing for quantum chemistry

RecGNN
Graph Fourier Transform Spectral ConvGNN Spatial ConvGNN

2018 Battaglia et al. Relational inductive biases, deep learning, and graph networks
© 2022. Ng Yen Kaow

GNN history (significant eras)
 1997 Sperduti and Starita Supervised neural networks for the classification of structures

2005 Gori et al. A new model for learning in graph domains
2009 Scarselli et al. The graph neural network model Hammond et al. Wavelets on graph via spectral graph theory Micheli Neural networks for graph: A contextual constructive approach

- Theory of spectral domain filters
- Idea of graph-based convolution

2010 Gallicchio and Micheli Graph echo state networks

2013 Shuman et al. The emerging field of signal processing on graphs Bruna et al. Spectral networks and locally-connected networks on graphs

GoogLeNet and V
2015 Henaff et al. Deep convolutional networks on graph-structured data

- Spectral domain filters as NNs and their approximation techniques

2016 Defferrard et al. Convolutional neural networks on graphs with fast localtze spectar Kipf and Welling Semi-supervised classification with graph convolutional networks Atwood and Towsley Diffusion-convolutional neural networks Niepert et al. Learning convolutional neural networks for graphs

2017 Gilmer et al. Neural message passing for quantum chemistry

- Adding up neighbors is all you need

GNN history (the people behind)
 1997 Sperduti and Starita Supervised neural networks for the classification of structures

LeCun LeNet-5 1998
2005 Gori et al. A new model for learning in graph domains (first use of the term GNN)
2009 Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory
Micheli Neural networks for graph: A contextual constructive approach
2010 Gallicchio and Micheli Graph echo state networks
Sutskever+Hinton AlexNet (U of T) wins ILSVRC
2012
2013 Shuman et al. The emerging field of signal processing on graphs
2013
LeCun Bruna et al. Spectral networks and locally-connected networks on graphs

2015 Henaff et al. Deep convolutional networks on graph-structured data
ResNet wins ILSVRC
2016 Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering
Google Kipf and Welling Semi-supervised classification with graph convolutional networks (GCN)
Atwood and Towsley Diffusion-convolutional neural networks
Niepert et al. Learning convolutional neural networks for graphs

RecGNN
Graph Fourier Transform Spectral ConvGNN Spatial ConvGNN

2017 Gilmer et al. Neural message passing for quantum chemistry Google

2018 Battaglia et al. Relational inductive biases, deep learning, and graph networks
© 2022. Ng Yen Kaow

Graph Fourier transform

\square Let U be a eigenbasis of some Laplacian L
\square Then $U^{\top} x$ is a projection of distribution x on eigenbasis U

- $\left.U^{\top} x=\left[\begin{array}{ccc}\leftarrow & \mu_{1} & \rightarrow \\ \leftarrow & \mu_{2} & \rightarrow \\ & \vdots & \end{array}\right] x=\left[\begin{array}{c}\mu_{1}^{\top} x \\ \mu_{2}^{\top} x \\ \vdots\end{array}\right]=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots\end{array}\right] \right\rvert\,=$
where $a_{i}=\mu_{i} x$ is the projection onto μ_{i}
x and H will be used
interchangeably here
- The projected space is $\sum_{i} a_{i} \mu_{i}$

Graph Fourier transform

$\square \quad$ Let U be a eigenbasis of some Laplacian L
\square Then $U^{\top} x$ is a projection of distribution x on eigenbasis

- An application of U would transform \dot{x} back into x

$$
\begin{aligned}
U \dot{x} & =\left[\begin{array}{ccc}
\uparrow & \uparrow & \\
\mu_{1} & \mu_{2} & \cdots \\
\downarrow & \downarrow &
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\mu_{11} a_{1}+\mu_{21} a_{2}+\cdots \\
\mu_{12} a_{1}+\mu_{22} a_{2}+\cdots \\
\vdots
\end{array}\right] \\
& =\mu_{1} a_{1}+\mu_{2} a_{2}+\cdots=\mu_{1} \mu_{1}^{\top} x+\mu_{2} \mu_{2}^{\top} x+\cdots \\
& =\left(\sum_{i} \mu_{i} \mu_{i}^{\top}\right) x=I x=x
\end{aligned}
$$

Homework: prove $\sum_{i} \mu_{i} \mu_{i}^{\top}=I$

Graph Fourier transform

$\square \quad$ Let U be a eigenbasis of some Laplacian L
\square Then $U^{\top} x$ is a projection of distribution x on eigenbasis
\square An application of U would transform \dot{x} back into x, $U(\dot{x})=U\left(U^{\top} x\right)=x$ (obvious since $U U^{\top}=I$)
\square Denote $U^{\top} x$ as $F(x)$ and $U \dot{x}$ as $F^{-1}(\dot{x})$

Graph Fourier transform

\square A convolution of x in the Fourier domain of a graph G is $x * g=F^{-1}(F(x) \odot F(g))=U\left(U^{\top} x \odot U^{\top} g\right)$
where U is the eigenbasis of some Laplacian of G, g is some filter that works on the eigenbasis U, and \odot is the element-wise (Hadamard) product
\square Suppose $U^{\top} g=\left[\begin{array}{c}g_{1} \\ g_{2} \\ \vdots\end{array}\right]$. Let $g_{\theta}=\operatorname{diag}\left(U^{\top} g\right)=\left[\begin{array}{ccc}g_{1} & 0 & 0 \\ 0 & g_{2} & 0 \\ 0 & 0 & \ddots\end{array}\right]$
Then we can write $x * g=U g_{\theta} U^{\top} x$ (shown below)

- Each g_{i} weights the significance of the eigenvector μ_{i}
- g_{θ} is to be inferred
- This inference task results in the spectral GNNs

$$
\begin{aligned}
& U^{\top} x \odot U^{\top} g=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right] \odot\left[\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
a_{1} g_{1} \\
a_{2} g_{2} \\
\vdots
\end{array}\right] \\
& g_{\theta} U^{\top} x=\left[\begin{array}{ccc}
g_{1} & 0 & 0 \\
0 & g_{2} & 0 \\
0 & 0 & \ddots
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
a_{1} g_{1} \\
a_{2} g_{2} \\
\vdots
\end{array}\right]
\end{aligned}
$$

Spectral GNN

- The spectral GNN task of learning a function f and filter g for graph G, is to infer f and the coefficients g_{1}, g_{2}, \ldots, such that for each $x, f\left(U g_{\theta} U^{\top} x\right)$ matches the desired output
- These GNNs work in the spectral domain as opposed to the spatial domain of the graph
- g_{θ} is to be independent of the eigenvectors U
- That is, $g_{\theta}(L)=g_{\theta}\left(U \Lambda U^{\top}\right)=U g_{\theta}(\Lambda) U^{\top} x$ where L is some Laplacian for G
- Of course, g_{θ} may turn out to be independent of Λ
- In which case, g_{θ} is inferred solely from the examples
$\square \quad$ In spectral GNNs we learn which eigenvectors to use from examples in a supervised learning
- In spectral clustering we take the eigenvectors of the slowest growth (hence more "global") and perform unsupervised learning with those vectors

Chebyshev approximation for U

\square However, computing U is $O\left(N^{3}\right)$ and computing $U^{\top} x$ is $O\left(N^{2}\right) \Rightarrow$ expensive
\square Approximate g_{θ} with Chebyshev polynomials

$$
g_{\theta}(\Lambda) \approx g_{\theta^{\prime}}(\Lambda)=\sum_{i=0}^{K} \theta_{i}^{\prime} T_{i}(\tilde{\Lambda})
$$

where
$\square \tilde{\Lambda}=\frac{2}{\lambda_{\max }} \Lambda-I\left(\lambda_{\max }\right.$ is the largest eigenvalue)
$\square \theta^{\prime} \in \mathbb{R}^{K}$ are Chebyshev coefficients, and
\square The polynomials $T_{i}(x)$ are computed with a recurrence relation

$$
\begin{aligned}
& T_{0}(x)=1, T_{1}(x)=x \text { (base case) } \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

$\square K$ is the number of expansion terms

Chebyshev approximation for U

\square However, computing U is $O\left(N^{3}\right)$ and computing $U^{\top} x$ is $O\left(N^{2}\right) \Rightarrow$ expensive
\square Approximate g_{θ} with Chebyshev polynomials

$$
g_{\theta}(\Lambda) \approx g_{\theta^{\prime}}(\Lambda)=\sum_{i=0}^{K} \theta_{i}^{\prime} T_{i}(\tilde{\Lambda})
$$

\square Then

$$
x * g_{\theta}=U g_{\theta} U^{\top} x \approx U\left(\sum_{i=0}^{K} \theta_{i}^{\prime} T_{i}(\tilde{\Lambda})\right) U^{\top} x
$$

- Since $U T(\tilde{\Lambda}) U^{\top}=\frac{2}{\lambda_{\text {max }}} U \Lambda U^{\top}-I U U^{\top}=\frac{2}{\lambda_{\text {max }}} L-I$

Write $\tilde{L}=\frac{2}{\lambda_{\text {max }}} L-I$ and $x * g_{\theta} \approx \sum_{i=0}^{K} \theta_{i}^{\prime} T_{i}(\tilde{L}) x$

Chebyshev approximation for U

- T_{n}, the $n^{\text {th }}$ order coefficient of the Chebyshev polynomials of the first kind, is

$$
T_{n}(\cos \theta)=\cos n \theta
$$

- The coefficients can be obtained using the recurrence relation

$$
\begin{gathered}
\cos (n+1) \theta+\cos (n-1) \theta=2 \cos \theta \cos n \theta \\
\Rightarrow T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
\end{gathered}
$$

$0^{\text {th }}$ order

$$
\cos 0 \theta=1
$$

$$
\Rightarrow T_{0}(x)=1
$$

$1^{\text {st }}$ order $\cos 1 \theta=\cos \theta$
$2^{\text {nd }}$ order $\cos 2 \theta=2 \cos ^{2} \theta-1$
$\Rightarrow T_{1}(x)=x$
$3^{\text {rd }}$ order $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \Rightarrow T_{3}(x)=4 x^{3}-3 x$

Chebyshev approximation for U

- Chebyshev approximation has $x * g_{\theta} \approx \sum_{i=0} \theta_{i}^{\prime} T_{i}(\tilde{L}) x$
\square To compute $T_{i}(\tilde{L})$, use the Chebyshev recurrence

$$
T_{0}(\tilde{L})=1, T_{1}(\tilde{L})=\tilde{L}, T_{n+1}(\tilde{L})=2 \tilde{L} T_{n}(\tilde{L})-T_{n-1}(\tilde{L})
$$

- Denote $\bar{x}_{k}=T_{k}(\tilde{L}) x$, this becomes

$$
\bar{x}_{n+1}=2 \tilde{L} \bar{x}_{n}-\bar{x}_{n-1}\left(\text { or } \bar{x}_{n}=2 \tilde{L} \bar{x}_{n-1}-\bar{x}_{n-2}\right)
$$

- Then, $x * g_{\theta} \approx \sum_{i=0}^{K} \theta_{i}^{\prime} T_{i}(\tilde{L}) x=\left[\begin{array}{lll}\theta_{0}^{\prime} & \ldots & \theta_{K}^{\prime}\end{array}\right]\left[\begin{array}{c}\bar{x}_{0} \\ \vdots \\ \bar{x}_{K}\end{array}\right]$
- Can be computed in $O(K|E|)$ time from \tilde{L}
- Precompute the K vectors $\bar{x}_{0}, \ldots, \bar{x}_{K}$, with the recurrence relation, and learn the scalars $\theta_{0}^{\prime}, \ldots, \theta_{K}^{\prime}$

$K=1$ (GCN) approximations

- Chebyshev approximation has $x * g_{\theta} \approx \sum_{i=0} \theta_{i}^{\prime} T_{i}(\tilde{L}) x$
- GCN takes $K=1$ to obtain

$$
x * g_{\theta^{\prime}} \approx \theta_{0}^{\prime} x+\theta_{1}^{\prime} \tilde{L} x=\theta_{0}^{\prime} x+\theta_{1}^{\prime}\left(\frac{2}{\lambda_{\max }} L-I_{N}\right) x
$$

- Since $\lambda_{\text {max }}=2$ we get $x * g_{\theta^{\prime}} \approx \theta_{0}^{\prime} x+\theta_{1}^{\prime}\left(L-I_{N}\right) x$ - θ_{0}^{\prime} and θ_{1}^{\prime} are parameters to be learned
- On the unweighted normalized Laplacian

$$
\begin{gathered}
L=D^{-1 / 2}(D-A) D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} \text {, this becomes } \\
x * g_{\theta^{\prime}}=\theta_{0}^{\prime} x-\theta_{1}^{\prime} D^{-1 / 2} A D^{-1 / 2} x
\end{gathered}
$$

\square Further constraint the number of parameters by letting $\theta_{0}^{\prime}=-\theta_{1}^{\prime}=\theta$

$$
x * g_{\theta^{\prime}}=\theta\left(I+D^{-1 / 2} A D^{-1 / 2}\right) x
$$

$K=1(\mathrm{GCN})$ approximations

\square However, since $L=I-D^{-1 / 2} A D^{-1 / 2}$

$$
\Rightarrow x * g_{\theta^{\prime}}=\theta\left(I+D^{-1 / 2} A D^{-1 / 2}\right) x=\theta(2 I-L) x
$$

\square Then, multiple applications of $\theta(2 I-L)$ would result in

$$
\theta^{k}(2 I-L)^{k} x=\theta^{k} U(2-\Lambda)^{k} U^{\top} x
$$

where Λ / U are the eigenvalues/eigenvectors for L

- Since L has eigenvalues in $\left[0, \lambda_{\max }\right]$ (where $\lambda_{\max } \leq 2$ is the largest eigenvalue of L)
$\Rightarrow(2-\Lambda)^{k}$ has range of $\left[\left(2-\lambda_{\max }\right)^{k}, 2^{k}\right]$
\Rightarrow Exponentially large spectral coefficients at higher k
- Solution: Let $\hat{A}=A+I$ (augmentation) and normalize \hat{A} (renormalization)

Augmented adjacency matrix
That is, $x * g_{\theta^{\prime}}=\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2} x$ where $\widehat{D}_{i i}=\sum_{i} \hat{A}_{i j}$

How legit are GCN approximations

- Consider the two approximations of $x * g_{\theta}$ in GCN

$$
\begin{aligned}
& \text { 1. } S_{1 \text {-order }}=\theta\left(I+D^{-1 / 2} A D^{-1 / 2}\right) \text {, or } \\
& \text { 2. } \hat{S}_{\mathrm{adj}}=\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}(\hat{A}=A+I)
\end{aligned}
$$

where θ is a scalar to be learned
\square Evaluate how well they approximate $x * g_{\theta}$ in the case that $g_{\theta}=\operatorname{diag}(\Lambda)$, that is,

$$
x * g_{\theta}=\left(U g_{\theta} U^{\top}\right) x=\left(U \Lambda U^{\top}\right) x=L x
$$

- First, letting $\theta_{0}^{\prime}=-\theta_{1}^{\prime}$ (case of $S_{1 \text {-order }}$) or $\theta_{0}^{\prime}=\theta_{1}^{\prime}$ would result in $x * g_{\theta^{\prime}}$ having the same eigenvectors as L, that is,
- $\theta_{0}^{\prime}=-\theta_{1}^{\prime} \Rightarrow x * g_{\theta^{\prime}}=\theta(2 I-L) x$
\Rightarrow same eigenvectors but eigenvalues become $2-\lambda$
- $\theta_{0}^{\prime}=\theta_{1}^{\prime} \Rightarrow x * g_{\theta^{\prime}}=\theta L x$
\Rightarrow same eigenvalues/ eigenvectors

How legit are GCN approximations

$\square \quad$ Use the Karate club graph for L
\square Comparison of eigenvectors/ eigenvalues
$\left.\begin{array}{lll}\hline \text { Filter } & \text { Eigenvalues } & \text { Eigenvector (corr. to smallest eigenvalue in } L \text {) } \\ \hline L & 1.71,1.61,1.58,1.57, \ldots, .39, .29, .13,0 & -.32,-.24,-.25,-.2,-14,-.16,-.16,-.16,-.18,-.11, \ldots, \\ -.14,-.14,-.11,-.16,-14,-16,-.16,-.2,-.28,-.33\end{array}\right)$

- $\quad L$ and $S_{1 \text {-order }}$ share the same eigenvectors
- Eigenvectors of $\hat{S}_{\text {adj }}$ closely resembles those of L and $S_{1 \text {-order }}$
\square Evaluate $\operatorname{MSE}\left(S_{1 \text {-order }} x, L x\right)$ and $\operatorname{MSE}\left(\hat{S}_{\text {adj }} x, L x\right)$ on randomly generated x
- $\quad \operatorname{MSE}\left(S_{1 \text {-order }} x, L x\right)=0.159$ (obtained at $\theta \sim 0.1$)
$\square \operatorname{MSE}\left(\hat{S}_{\text {adj }} x, L x\right)=0.166$ (obtained at $\theta \sim 0.07$)
- MSE(random vector, $L x$) $=0.413$
- Better than random but lackluster performance due to differences in eigenvalues which were not remedied downstream

Matrices introduced so far

	Name	Eigenvalues range
A	Adjacency matrix	$[-\max (A), \max (A)]$ (also see Bhunia et al. 2019)
$D-A$	Laplacian	$[0,2 \max (A)]$
$\begin{aligned} & I-D^{-1 / 2} A D^{-1 / 2} \\ & \left(\text { or } D^{-1 / 2}(D-A) D^{-1 / 2}\right) \end{aligned}$	Normalized Laplacian	$[0,2]$
$D^{-1 / 2} A D^{-1 / 2}$	Normalized adjacency matrix (Ng, Jordan, Weiss. 2001)	$[-1,1]$
$I-D^{-1} A$	Random Walk Laplacian	(non-symmetric)
$I+D^{-1 / 2} A D^{-1 / 2}$	$1^{\text {st }}$ order approximation GCN (Kipf and Welling. 2016)	$[0,2]$
$\hat{A}=I+A$	Augmented adjacency matrix	$[-\max (\hat{A}), \max (\hat{A})]$
$\widehat{D}-\hat{A}=(D+I)-(A+I)=D-A$	(Augmented) Laplacian	[0,2 max $(A)]$
$I-\widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$	Normalized augmented Laplacian	[0, 2]
$\widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$	Normalized augmented adjacency matrix GCN (Kipf and Welling. 2016)	$[-1,1]$

Matrices introduced so far

	Name	Eigenvalues range
A	Adjacency matrix	$[-\max (A), \max (A)]$
$D-A$	Laplacian	[$0,2 \max (A)$]
$\int_{\left(\text {or } D^{-1 / 2}(D-A) D^{-1 / 2}\right)}$	Normalized Laplacian	[0, 2]
$D^{-1 / 2} A D^{-1 / 2}$	Normalized adjacency matrix (Ng, Jordan, Weiss. 2001)	These have similar eigenvectors (but differ in eigenvalues)
$I-D^{-1} A$	Random Walk Laplacian	
$1+D^{-1 / 2} A D^{-1 / 2}$	$1^{\text {st }}$ order approximation GCN (Kipf and Welling, 2016)	
(tat	Augmented adjacency matrix	
$\widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$	Normalized augmented adjacency matrix GCN (Kipf and Welling 2016	$[-1,1]$

Goodness of adjacency matrices

\square The use of adjacency matrix $\hat{S}_{\text {adj }}=\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$ allows GCN to be consider as spatial GNN (Gilmer et al. 2017)

Rewrite $\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2} x$ as $\hat{A} H W$ it is clear that the method is spatial
$\square \hat{S}_{\text {adj }}=\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$ as low-pass filter (Wu et al. 2019)

- A filter $x * g=U g_{\theta} U^{\top} x$ projects x into the eigenbasis U
\square Adjacency matrices filters x through only the low frequency (global) eigenvectors
- Two contributing factors

1. Effects of stacking multiple layers
2. Effects of augmentation

Goodness of adjacency matrices

$\square \hat{S}_{\mathrm{adj}}=\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$ as low-pass filter (Wu et al. 2019)

1. Effects of stacking multiple layers

- As mentioned, $\left(\hat{S}_{\mathrm{adj}}\right)^{k}=\theta^{k} U(2-\Lambda)^{k} U^{\top}$
- At high k, values of $(2-\Lambda)^{k}$ for $(2-\Lambda) \ll 1$ diminish

Filter	Eigenvalues (using the Karate club graph for L)
L^{6}	$25.41,17.54,15.76,14.95,11.26,9.24,8.09,7.31,6.1,4.16,2.43,1.82,1,1,1$, $1,1,1,1,1,1,1,0.56,0.42,0.31,0.21,0.16,0.13,0.07,0.05,0,0,0,0$
$\left(S_{1 \text {-order }}\right)^{6}$	$64,42.45,25.26,17.59,7.14,6.08,4.67,4 ., 3.45,2.66,2.14,1.71,1,1,1,1,1$, $1,1,1,1,1,0.51,0.35,0.15,0.07,0.05,0.04,0.03,0.02,0.01,0.01,0,0$
$\left(\hat{S}_{\text {adj }}\right)^{6}$	$1,0.52,0.22,0.12,0.03,0.02,0.01,0.01,0.01,0.01,0,0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0,0,0,0,0,0$

- Eigenvalue of 1 for $\left(\hat{S}_{\text {adj }}\right)^{6}$ corresponds to the eigenvalue of 0 for $L \Rightarrow$ low frequency (low-pass) filter
- The same cannot be achieved with L because of the range of eigenvalues

Goodness of adjacency matrices

$\square \hat{S}_{\text {adj }}=\theta \widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$ as low-pass filter (Wu et al. 2019)

2. Effects of augmentation

- An adjacency matrix with augmentation (self-loops) has a smaller spectrum than one without (that is, the normalized adjacency matrix $D^{-1 / 2} A D^{-1 / 2}$)
- Theorem (Wu et al. 2019). Let A (and D) be the adjacency matrix (and degree matrix) of an undirected, weighted, simple connected graph G. Let $\hat{A}=A+\gamma I, \gamma>0$ and let \widehat{D} be its degree matrix. Let
- $\lambda_{n} / \lambda_{1}$ be the min/max eigenvalues of $D^{-1 / 2} A D^{-1 / 2}$
- $\hat{\lambda}_{n} / \hat{\lambda}_{1}$ be the min/max eigenvalues of $\widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$ Then $\lambda_{n}<\hat{\lambda}_{n}<\hat{\lambda}_{1}=\lambda_{1}=1$
\Rightarrow Eigenvalues of $\widehat{D}^{-1 / 2} \hat{A} \widehat{D}^{-1 / 2}$ range in $[\lambda, 1]$ for some $\lambda>-1 \Rightarrow$ No exponential increase at large k

More levels of augmentation

\square Extend augmentation $\hat{A}=A+I$ to more levels

- Consider $\hat{A}_{\gamma}=A+\gamma I$ for different values of γ
\square The larger the value γ, the smaller the spectrum
Theorem (Hoang and Maehara, 2019). Let
- $\hat{A}_{\gamma}=A+\gamma I$ for $\gamma>0$
- \widehat{D}_{γ} be the degree matrix for \hat{A}_{γ}
- $\lambda_{\gamma}^{(i)}$ be the $i^{\text {th }}$ largest eigenvalue of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$

Then for $0 \leq \gamma^{\prime}<\gamma, \lambda_{\gamma^{\prime}}^{(i)}<\lambda_{\gamma}^{(i)} \leq \lambda_{\gamma^{\prime}}^{(1)}=\lambda_{\gamma}^{(1)}=1$
Corollary. $\gamma>\gamma^{\prime} \Rightarrow\left[\lambda_{\gamma}^{(n)}, \lambda_{\gamma}^{(1)}\right]$ is smaller than $\left[\lambda_{\gamma^{\prime}}^{(n)}, \lambda_{\gamma^{\prime}}^{(1)}\right]$

- Eigenvectors would change as well but that trend is less well understood

Eigenvalues after augmentation

- Eigenvalues of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ for the Karate club
- All eigenvalues except 1 diminishes quickly when raised to some power
- Negative eigenvalues will dovetail between negative and positive as the power changes between odd and even numbers
$\square \quad$ At some γ value, the range becomes close to [0, 1]
- In the present example, $\gamma=4.5$

| γ | Eigenvalues of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ | Range |
| :--- | :--- | :--- | :--- |
| 0.0 | $1.0,0.868,0.713, \ldots,-0.583,-0.612,-0.715$ | $[-0.715,1.0]$ |
| 0.5 | $1.0,0.884,0.747, \ldots,-0.391,-0.435,-0.542$ | $[-0.542,1.0]$ |
| 1.0 | $1.0,0.896,0.774, \ldots,-0.271,-0.312,-0.420$ | $[-0.420,1.0]$ |
| 1.5 | $1.0,0.906,0.796, \ldots,-0.182,-0.220,-0.325$ | $[-0.325,1.0]$ |
| 2.0 | $1.0,0.915,0.815, \ldots,-0.113,-0.149,-0.249$ | $[-0.249,1.0]$ |
| 2.5 | $1.0,0.922,0.830, \ldots,-0.057,-0.089,-0.184$ | $[-0.184,1.0]$ |
| 3.0 | $1.0,0.928,0.843, \ldots,-0.010,-0.039,-0.129$ | $[-0.129,1.0]$ |
| 3.5 | $1.0,0.933,0.854, \ldots, 0.032,0.004,-0.080$ | $[-0.080,1.0]$ |
| 4.0 | $1.0,0.937,0.864, \ldots, 0.069,0.042,-0.037$ | $[-0.037,1.0]$ |
| 4.5 | $1.0,0.941,0.873, \ldots, 0.103,0.076,0.000$ | $[0.000,1.0]$ |
| 5.0 | $1.0,0.945,0.881, \ldots, 0.134,0.106,0.036$ | $[0.036,1.0]$ |
| 5.5 | $1.0,0.948,0.888, \ldots, 0.163,0.133,0.067$ | $[0.067,1.0]$ |
| 6.0 | $1.0,0.950,0.894, \ldots, 0.190,0.158,0.096$ | $[0.096,1.0]$ |
| 6.5 | $1.0,0.953,0.899, \ldots, 0.215,0.181,0.123$ | $[0.123,1.0]$ |
| 7.0 | $1.0,0.955,0.904, \ldots, 0.239,0.203,0.148$ | $[0.147,1.0]$ |
| 7.5 | $1.0,0.957,0.909, \ldots, 0.261,0.223,0.170$ | $[0.170,1.0]$ |
| 8.0 | $1.0,0.959,0.913, \ldots, 0.282,0.242,0.192$ | $[0.192,1.0]$ |

Eigenvectors after augmentation

- Eigenvectors of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ for the Karate club

Deviation from
$D^{-1 / 2} A D^{-1 / 2}$
becomes very significant as γ increases beyond 1
$\gamma \quad$ Eigenvector of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ of largest eigenvalue (=1)

$$
\begin{array}{cc}
0.0 & 0.320,0.240,0.253,0.196, \ldots, 0.160,0.196,0.277,0.330 \\
0.5 & 0.309,0.234,0.246,0.194, \ldots, 0.161,0.194,0.269,0.318 \\
1.0 & 0.299,0.229,0.241,0.192, \ldots, 0.162,0.192,0.262,0.308 \\
1.5 & 0.291,0.225,0.236,0.190, \ldots, 0.163,0.190,0.255,0.299 \\
2.0 & 0.283,0.222,0.231,0.189, \ldots, 0.164,0.189,0.250,0.291 \\
2.5 & 0.277,0.218,0.228,0.188, \ldots, 0.164,0.188,0.245,0.284 \\
3.0 & 0.271,0.216,0.224,0.187, \ldots, 0.165,0.187,0.241,0.278 \\
3.5 & -0.266,-0.213,-0.222,-0.186, \ldots,-0.165,-0.186,-0.237,-0.273 \\
4.0 & -0.262,-0.211,-0.219,-0.185, \ldots,-0.166,-0.185,-0.234,-0.268 \\
4.5 & -0.258,-0.209,-0.217,-0.184, \ldots,-0.166,-0.184,-0.231,-0.264 \\
5.0 & -0.254,-0.207,-0.215,-0.184, \ldots,-0.166,-0.184,-0.228,-0.260 \\
5.5 & -0.250,-0.206,-0.213,-0.183, \ldots,-0.166,-0.183,-0.226,-0.256 \\
6.0 & -0.247,-0.204,-0.211,-0.183, \ldots,-0.167,-0.183,-0.224,-0.253 \\
6.5 & -0.244,-0.203,-0.209,-0.182, \ldots,-0.167,-0.182,-0.222,-0.250 \\
7.0 & -0.242,-0.202,-0.208,-0.182, \ldots,-0.167,-0.182,-0.220,-0.247 \\
7.5 & 0.239,0.200,0.206,0.181, \ldots, 0.167,0.181,0.218,0.244 \\
8.0 & -0.237,-0.199,-0.205,-0.181, \ldots,-0.167,-0.181,-0.216,-0.242
\end{array}
$$

Eigenvectors after augmentation

- Eigenvectors of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ for the Karate club

Deviation from
$D^{-1 / 2} A D^{-1 / 2}$
becomes very significant as γ increases beyond 1
$\gamma \quad$ Eigenvector of $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ of smallest eigenvalue

$$
\begin{array}{cc}
0.0 & 0.221,0.185,0.035,0.019, \ldots,-0.164,-0.199,0.410,0.473 \\
0.5 & 0.247,0.198,0.033,0.015, \ldots,-0.169,-0.228,0.410,0.501 \\
1.0 & 0.273,0.197,0.031,0.009, \ldots,-0.166,-0.242,0.404,0.524 \\
1.5 & 0.295,0.190,0.029,0.004, \ldots,-0.161,-0.249,0.396,0.545 \\
2.0 & -0.315,-0.180,-0.028,0.001, \ldots, 0.154,0.251,-0.386,-0.566 \\
2.5 & 0.333,0.168,0.027,-0.006, \ldots,-0.147,-0.250,0.373,0.585 \\
3.0 & 0.349,0.157,0.027,-0.009, \ldots,-0.141,-0.247,0.358,0.604 \\
3.5 & 0.364,0.145,0.027,-0.012, \ldots,-0.135,-0.243,0.342,0.621 \\
4.0 & 0.377,0.134,0.027,-0.015, \ldots,-0.129,-0.239,0.326,0.637 \\
4.5 & -0.388,-0.124,-0.028,0.017, \ldots, 0.124,0.234,-0.308,-0.653 \\
5.0 & -0.398,-0.114,-0.029,0.019, \ldots, 0.119,0.229,-0.291,-0.667 \\
5.5 & -0.406,-0.105,-0.030,0.020, \ldots, 0.115,0.224,-0.274,-0.680 \\
6.0 & -0.413,-0.097,-0.031,0.021, \ldots, 0.110,0.219,-0.257,-0.692 \\
6.5 & -0.418,-0.089,-0.031,0.022, \ldots, 0.107,0.214,-0.241,-0.703 \\
7.0 & -0.422,-0.082,-0.032,0.023, \ldots, 0.104,0.209,-0.226,-0.714 \\
7.5 & 0.425,0.076,0.033,-0.024, \ldots,-0.101,-0.204,0.211,0.723 \\
8.0 & -0.427,-0.070,-0.034,0.024, \ldots, 0.098,0.200,-0.197,-0.733
\end{array}
$$

Low-pass filter performance

- We need to first find out how well a low-pass filter perform
\square Construct such a filter (of only low frequency eigenvectors)
- Recall that $x * g=U g_{\theta} U^{\top} x$ where $U=\left[\mu_{1}, \mu_{2}, \ldots\right]$
- $g_{\theta}=\operatorname{diag}\left(U^{\top} g\right)=\left[\begin{array}{ccc}g_{1} & 0 & 0 \\ 0 & g_{2} & 0 \\ 0 & 0 & \ddots\end{array}\right]$
- Each g_{i} weights the significance of eigenvector μ_{i}
- Obtain U from decomposition of normalized Laplacian
- The eigenvalues are in the range of $[0,2]$ where 0 has the lowest frequency (global) and 2 has the highest frequency
- Sort eigenvectors by the eigenvalues and include only low frequency eigenvectors in filter UIU ${ }^{\top}$ (details in later slide)
- The use of I as g_{θ} implies that all eigenvectors included are equal
- Alternatively let $g_{i}=2-\lambda_{i}$ so smaller eigenvalues are more significant
$\square \quad$ Compare effects of including only low frequency eigenvectors versus using all eigenvectors

Low-pass filter performance

- Cora dataset

- Nodes: 2708 scientific publications
- Links: 5429
- Feature: 1433 word embedding
- Classes: 7
\square Procedure
- Filter features with $50,100,150, \ldots$ eigenvectors of the lowest frequencies
- Train a 2-layer MLP to classify with the filtered features

© 2022. Ng Yen Kaow

Adjacency matrix performance

- Repeat test with $\widehat{D}_{\gamma}^{-1 / 2} \hat{A}_{\gamma} \widehat{D}_{\gamma}^{-1 / 2}$ where $\hat{A}_{\gamma}=A+\gamma I$ as filter

\square Accuracies obtained comparable to low-pass filters
\square Increasing amount of augmentation γ improves accuracy
\square Stacking more layers helps but only to a certain extend

Filter with only subset eigenvectors

- Recall from earlier slide

$$
U^{\top} x=\left[\begin{array}{ccc}
\leftarrow & \mu_{1} & \rightarrow \\
\leftarrow & \mu_{2} & \rightarrow \\
& \vdots &
\end{array}\right] x=\left[\begin{array}{c}
\mu_{1}^{\top} x \\
\mu_{2}^{\top} x \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]
$$

- Examine the exact form of a_{i}
- Denote $x=\left[\begin{array}{ccc}\leftarrow & x_{1} & \vec{\leftarrow} \\ \leftarrow & x_{2} & \rightarrow \\ & \vdots & \end{array}\right]$, where each $x_{i}=\left[\begin{array}{llll}x_{i 1} & x_{i 2} & \cdots & x_{i M}\end{array}\right]$

$$
\begin{aligned}
& U^{\top} x=\left[\begin{array}{ccc}
\leftarrow & \mu_{1} & \rightarrow \\
\leftarrow & \mu_{2} & \rightarrow \\
& \vdots &
\end{array}\right]\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 M} \\
x_{21} & x_{22} & \cdots & x_{2 M} \\
& & \vdots & \\
&
\end{array}\right]=\left[\begin{array}{cccc}
\mu_{1}^{\top} x_{* 1} & \mu_{1}^{\top} x_{* 2} & \cdots & \mu_{1}^{\top} x_{* M} \\
\mu_{2}^{\top} x_{* 1} & \mu_{2}^{\top} x_{* 2} & \cdots & \mu_{2}^{\top} x_{* M} \\
\vdots & \vdots & & \vdots
\end{array}\right] \\
& \Rightarrow a_{i}=\left[\begin{array}{llll}
\mu_{i}^{\top} x_{* 1} & \mu_{i}^{\top} x_{* 2} & \cdots & \mu_{i}^{\top} x_{* M}
\end{array}\right]
\end{aligned}
$$

- $\quad a_{i}$ is computed from all rows and columns of x
- For $\mu_{i}^{\top} x_{* *}$ to compute correctly indices of μ_{i}^{\top} and $x_{* *}$ must match
- However, the ordering of μ_{1}, μ_{2}, \ldots in $\left[\begin{array}{ccc}\leftarrow & \mu_{1} & \\ \leftarrow & \mu_{2} & \rightarrow \\ \vdots & \vdots & \rightarrow\end{array}\right]$ does not matter
- To use only some eigenvectors, simply zero out the unused eigenvectors (corresponding $a_{i} s$ will become zero)
$\square \quad$ Or just remove those unused eigenvectors

