Spectral Basis of GNNs Ng Yen Kaow

© 2022. Ng Yen Kaow

GNN history

© 2022. Ng Yen Kaow

1997 Sperduti and Starita Supervised neural networks for the classification of structures

LeNet-5 1998

- 2005 Gori *et al.* A new model for learning in graph domains
- Scarselli *et al.* The graph neural network model
 Hammond *et al.* Wavelets on graph via spectral graph theory
 Micheli Neural networks for graph: A contextual constructive approach
- 2010 Gallicchio and Micheli Graph echo state networks

AlexNet (U of T) wins ILSVRC 2012

2013Shuman *et al.* The emerging field of signal processing on graphs2013Bruna *et al.* Spectral networks and locally-connected networks on graphs2013

ZFNet (NYU) wins ILSVRC

GoogLeNet and VGGNet wins ILSVRC 2014

2015 Henaff et al. Deep convolutional networks on graph-structured data

2015

ResNet wins ILSVRC

- 2016 Defferrard *et al.* Convolutional neural networks on graphs with fast localized spectral filtering Kipf and Welling Semi-supervised classification with graph convolutional networks Atwood and Towsley Diffusion-convolutional neural networks Niepert *et al.* Learning convolutional neural networks for graphs
- 2017 Gilmer et al. Neural message passing for quantum chemistry
- 2018 Battaglia et al. Relational inductive biases, deep learning, and graph networks

RecGNN Graph Fourier Transform Spectral ConvGNN Spatial ConvGNN

2017 Gilmer et al. Neural message passing for quantum chemistry Google

2018 Battaglia *et al.* Relational inductive biases, deep learning, and graph networks Google © 2022. Ng Yen Kaow

- \Box Let *U* be a eigenbasis of some Laplacian *L*
- □ Then $U^{\top}x$ is a projection of distribution x on eigenbasis U x and H will be used

$$U^{\mathsf{T}} x = \begin{bmatrix} \leftarrow & \mu_1 & \rightarrow \\ \leftarrow & \mu_2 & \rightarrow \\ \vdots & \end{bmatrix} x = \begin{bmatrix} \mu_1^{\mathsf{T}} x \\ \mu_2^{\mathsf{T}} x \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \dot{x} \\ dimension of \\ Fourier space \\ (= #eigenvectors) \end{bmatrix}$$

where $a_i = \mu_i x$ is the projection onto μ_i

- \Box Let *U* be a eigenbasis of some Laplacian *L*
- □ Then $U^{\top}x$ is a projection of distribution x on eigenbasis U
- □ An application of U would transform \dot{x} back into x

$$U\dot{x} = \begin{bmatrix} \uparrow & \uparrow & \\ \mu_{1} & \mu_{2} & \\ \downarrow & \downarrow & \\ \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \end{bmatrix} = \begin{bmatrix} \mu_{11}a_{1} + \mu_{21}a_{2} + \cdots \\ \mu_{12}a_{1} + \mu_{22}a_{2} + \cdots \\ \vdots \end{bmatrix}$$
$$= \mu_{1}a_{1} + \mu_{2}a_{2} + \cdots = \mu_{1}\mu_{1}^{T}x + \mu_{2}\mu_{2}^{T}x + \cdots$$
$$= (\sum_{i} \mu_{i}\mu_{i}^{T})x = Ix = x$$
Homework: prove $\sum_{i} \mu_{i}\mu_{i}^{T} = I$

- \Box Let *U* be a eigenbasis of some Laplacian *L*
- □ Then $U^{\top}x$ is a projection of distribution x on eigenbasis U
- □ An application of *U* would transform \dot{x} back into *x*, $U(\dot{x}) = U(U^{\top}x) = x$ (obvious since $UU^{\top} = I$)
- Denote $U^{\top}x$ as F(x) and $U\dot{x}$ as $F^{-1}(\dot{x})$

A convolution of x in the Fourier domain of a graph G is $x * g = F^{-1}(F(x) \odot F(g)) = U(U^{\top}x \odot U^{\top}g)$ where U is the eigenbasis of some Laplacian of G, g is some filter that works on the eigenbasis U, and \odot is the element-wise (Hadamard) product

$$\square \quad \text{Suppose } \boldsymbol{U}^{\mathsf{T}}\boldsymbol{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \end{bmatrix}. \text{ Let } g_{\theta} = \text{diag}(\boldsymbol{U}^{\mathsf{T}}\boldsymbol{g}) = \begin{bmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$$

Then we can write $x * g = Ug_{\theta}U^{\top}x$ (shown below)

- Each g_i weights the significance of the eigenvector μ_i
- g_{θ} is to be inferred
- This inference task results in the spectral GNNs

$$U^{\mathsf{T}} x \odot U^{\mathsf{T}} g = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} \odot \begin{bmatrix} g_1 \\ g_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1 g_1 \\ a_2 g_2 \\ \vdots \end{bmatrix}$$
$$g_{\theta} U^{\mathsf{T}} x = \begin{bmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & \ddots \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1 g_1 \\ a_2 g_2 \\ \vdots \end{bmatrix}$$

© 2022. Ng Yen Kaow

Henaff et al. Deep Convolutional Networks on Graph-Structured Data, 2013

Spectral GNN

- □ The spectral GNN task of learning a function f and filter g for graph G, is to infer f and the coefficients g_1 , g_2 , ..., such that for each x, $f(Ug_{\theta}U^{\top}x)$ matches the desired output
 - These GNNs work in the spectral domain as opposed to the spatial domain of the graph
 - g_{θ} is to be independent of the eigenvectors U
 - That is, $g_{\theta}(L) = g_{\theta}(U\Lambda U^{\mathsf{T}}) = Ug_{\theta}(\Lambda)U^{\mathsf{T}}x$ where *L* is some Laplacian for *G*
 - \Box Of course, g_{θ} may turn out to be independent of Λ
 - In which case, g_{θ} is inferred solely from the examples
- In spectral GNNs we learn which eigenvectors to use from examples in a supervised learning
 - In spectral clustering we take the eigenvectors of the slowest growth (hence more "global") and perform unsupervised learning with those vectors

© 2022. Ng Yen Kaow

- □ However, computing *U* is $O(N^3)$ and computing $U^T x$ is $O(N^2) \Rightarrow$ expensive
- Approximate g_{θ} with Chebyshev polynomials

$$g_{\theta}(\Lambda) \approx g_{\theta'}(\Lambda) = \sum_{i=0}^{\kappa} \theta'_i T_i(\tilde{\Lambda})$$

where

- $\Box \tilde{\Lambda} = \frac{2}{\lambda_{\max}} \Lambda I \ (\lambda_{\max} \text{ is the largest eigenvalue})$
- $\Box \theta' \in \mathbb{R}^{K}$ are Chebyshev coefficients, and
- □ The polynomials $T_i(x)$ are computed with a recurrence relation

•
$$T_0(x) = 1, T_1(x) = x$$
 (base case)

$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$$

 \Box *K* is the number of expansion terms

- □ However, computing *U* is $O(N^3)$ and computing $U^T x$ is $O(N^2) \Rightarrow$ expensive
- □ Approximate g_{θ} with Chebyshev polynomials

$$g_{\theta}(\Lambda) \approx g_{\theta'}(\Lambda) = \sum_{i=0}^{K} \theta'_{i} T_{i}(\tilde{\Lambda})$$

$$x * g_{\theta} = U g_{\theta} U^{\mathsf{T}} x \approx U \left(\sum_{i=0}^{K} \theta'_{i} T_{i}(\tilde{\Lambda}) \right) U^{\mathsf{T}} x$$

• Since
$$UT(\tilde{\Lambda})U^{\top} = \frac{2}{\lambda_{\max}}U\Lambda U^{\top} - IUU^{\top} = \frac{2}{\lambda_{\max}}L - I$$

Write $\tilde{L} = \frac{2}{\lambda_{\max}}L - I$ and $x * g_{\theta} \approx \sum_{i=0}^{K} \theta'_i T_i(\tilde{L}) x$

Chebyshev approximation

 $\Box T_n, \text{ the } n^{\text{th}} \text{ order coefficient of the}$ Chebyshev polynomials **of the first kind**, is $T_n(\cos \theta) = \cos n\theta$

The coefficients can be obtained using the recurrence relation

 $\cos(n+1)\theta + \cos(n-1)\theta = 2\cos\theta\cos n\theta$ $\Rightarrow T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$

 $\begin{array}{c} {}^{\text{Oth order}} & \cos 0\theta = 1 \\ {}^{1\text{st order}} & \cos 1\theta = \cos \theta \\ {}^{2^{\text{nd order}}} & \cos 2\theta = 2\cos^2 \theta - 1 \\ {}^{3^{\text{rd order}}} & \cos 3\theta = 4\cos^3 \theta - 3\cos \theta \end{array} \Rightarrow T_3(x) = 4x^3 - 3x \end{array}$

- □ Chebyshev approximation has $x * g_{\theta} \approx \sum_{i=1}^{\infty} \theta'_{i} T_{i}(\tilde{L}) x$
- To compute $T_i(\tilde{L})$, use the Chebyshev recurrence

$$T_0(\tilde{L}) = 1, T_1(\tilde{L}) = \tilde{L}, T_{n+1}(\tilde{L}) = 2 \tilde{L} T_n(\tilde{L}) - T_{n-1}(\tilde{L})$$

Denote $\bar{x}_k = T_k(\tilde{L}) x$, this becomes

$$\bar{x}_{n+1} = 2 \tilde{L} \bar{x}_n - \bar{x}_{n-1} \text{ (or } \bar{x}_n = 2 \tilde{L} \bar{x}_{n-1} - \bar{x}_{n-2})$$

$$\Box \text{ Then, } x * g_\theta \approx \sum_{i=0}^K \theta'_i T_i(\tilde{L}) x = [\theta'_0 \dots \theta'_K] \begin{bmatrix} \bar{x}_0 \\ \vdots \\ \bar{x}_K \end{bmatrix}$$

- Can be computed in O(K|E|) time from \tilde{L}
- □ Precompute the *K* vectors $\bar{x}_0, ..., \bar{x}_K$, with the recurrence relation, and learn the scalars $\theta'_0, ..., \theta'_K$

K = 1 (GCN) approximations

□ Chebyshev approximation has $x * g_{\theta} \approx \sum_{i=1}^{N} \theta'_i T_i(\tilde{L}) x$

GCN takes
$$K = 1$$
 to obtain
 $x * g_{\theta'} \approx \theta'_0 x + \theta'_1 \tilde{L} x = \theta'_0 x + \theta'_1 \left(\frac{2}{\lambda_{\max}} L - I_N\right) x$

- Since $\lambda_{\max} = 2$ we get $x * g_{\theta'} \approx \theta'_0 x + \theta'_1 (L I_N) x$ θ'_0 and θ'_1 are parameters to be learned
- On the unweighted normalized Laplacian $L = D^{-1/2}(D - A)D^{-1/2} = I - D^{-1/2}AD^{-1/2}$, this becomes $x * g_{\theta'} = \theta'_0 x - \theta'_1 D^{-1/2}AD^{-1/2} x$
- Further constraint the number of parameters by letting $\theta'_0 = -\theta'_1 = \theta$

$$x * g_{\theta'} = \theta (I + D^{-1/2} A D^{-1/2}) x$$

GCN 1st order approximation

K = 1 (GCN) approximations

 \Box However, since $L = I - D^{-1/2}AD^{-1/2}$

 $\Rightarrow x \ast g_{\theta'} = \theta \big(I + D^{-1/2} A D^{-1/2} \big) x = \theta (2I - L) x$

□ Then, multiple applications of $\theta(2I - L)$ would result in $\theta^k(2I - L)^k x = \theta^k U(2 - \Lambda)^k U^\top x$

where Λ/U are the eigenvalues/eigenvectors for *L* (GCN places non-linear functions between layers which we ignore in this derivation)

Since *L* has eigenvalues in $[0, \lambda_{max}]$ (where $\lambda_{max} \le 2$ is the largest eigenvalue of *L*)

 $\Rightarrow (2 - \Lambda)^k$ has range of $[(2 - \lambda_{max})^k, 2^k]$

 \Rightarrow Exponentially large spectral coefficients at higher k

□ Solution: Let $\hat{A} = A + I$ (augmentation) and normalize \hat{A} (renormalization) Augmented adjacency matrix

That is, $|x * g_{\theta'} = \theta \widehat{D}^{-1/2} \widehat{A} \widehat{D}^{-1/2} x|$ where $\widehat{D}_{ii} = \sum_i \widehat{A}_{ij}$

Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, 2016

How legit are GCN approximations

- □ Consider the two approximations of $x * g_{\theta}$ in GCN
 - 1. $S_{1-\text{order}} = \theta (I + D^{-1/2} A D^{-1/2})$, or

2.
$$\hat{S}_{adj} = \theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} (\hat{A} = A + I)$$

where θ is a scalar to be learned

□ Evaluate how well they approximate $x * g_{\theta}$ in the case that $g_{\theta} = \text{diag}(\Lambda)$, that is,

$$x * g_{\theta} = (Ug_{\theta}U^{\mathsf{T}})x = (U\Lambda U^{\mathsf{T}})x = Lx$$

□ First, letting $\theta'_0 = -\theta'_1$ (case of $S_{1\text{-order}}$) or $\theta'_0 = \theta'_1$ would result in $x * g_{\theta'}$ having the same eigenvectors as *L*, that is,

$$\theta_0' = -\theta_1' \Rightarrow x * g_{\theta'} = \theta(2I - L)x$$

 \Rightarrow same eigenvectors but eigenvalues become 2 – λ

$$\theta_0' = \theta_1' \Rightarrow x * g_{\theta'} = \theta L x$$

 \Rightarrow same eigenvalues/ eigenvectors

© 2022. Ng Yen Kaow

How legit are GCN approximations

- \Box Use the Karate club graph for *L*
- Comparison of eigenvectors/ eigenvalues

Filter	Eigenvalues	Eigenvector (corr. to smallest eigenvalue in L)
L	1.71, 1.61, 1.58, 1.57,, .39, .29, .13, 0	32,24,25,2,14,16,16,16,18,11,, 14,14,11,16,14,16,16,2,28,33
S _{1-order}	2., 1.87, 1.71, 1.61, 1.39,, .5, .43, .42, .39, .29	.32, .24, .25, .2, .14, .16, .16, .16, .18, .11,, .14, .14, .11, .16, .14, .16, .16, .2, .28, .33
${oldsymbol{\widehat{S}}}_{ m adj}$	1., .9, .77, .7, .55,,21,22,27, 31,42	.3, .23, .24, .19, .15, .16, .16, .16, .18, .13,, .15, .15, .13, .16, .15, .16, .16, .19, .26, .31

- L and S_{1-order} share the same eigenvectors
- Eigenvectors of \hat{S}_{adj} closely resembles those of L and $S_{1-order}$
- □ Evaluate MSE($S_{1-order}x$, Lx) and MSE($\hat{S}_{adj}x$, Lx) on randomly generated x
 - $\square MSE(S_{1-order}x, Lx) = 0.159 \text{ (obtained at } \theta \sim 0.1)$
 - $\square MSE(\hat{S}_{adj}x, Lx) = 0.166 \text{ (obtained at } \theta \sim 0.07)$
 - $\square MSE(random vector, Lx) = 0.413$
 - Better than random but lackluster performance due to differences

in eigenvalues which were not remedied downstream

Matrices introduced so far

	Name	Eigenvalues range
A	Adjacency matrix	[-max(<i>A</i>), max(<i>A</i>)] (also see Bhunia <i>et al.</i> 2019)
D - A	Laplacian	[0 , 2 max(<i>A</i>)]
$I - D^{-1/2} A D^{-1/2}$ (or $D^{-1/2}(D - A)D^{-1/2}$)	Normalized Laplacian	[<mark>0</mark> , 2]
$D^{-1/2}AD^{-1/2}$	Normalized adjacency matrix (Ng, Jordan, Weiss. 2001)	[-1, 1]
$I - D^{-1}A$	Random Walk Laplacian	(non-symmetric)
$I + D^{-1/2} A D^{-1/2}$	1 st order approximation GCN (Kipf and Welling. 2016)	[0, <mark>2</mark>]
$\hat{A} = I + A$	Augmented adjacency matrix	$[-\max(\hat{A}), \max(\hat{A})]$
$\hat{D} - \hat{A} = (D+I) - (A+I) = D - A$ $I - \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2}$	(Augmented) Laplacian Normalized augmented Laplacian	[0, 2 max(<i>A</i>)] [0, 2]
$\widehat{D}^{-1/2}\widehat{A}\widehat{D}^{-1/2}$	Normalized augmented adjacency matrix GCN (Kipf and Welling. 2016)	[-1, 1]

Matrices introduced so far

	Name	Eigenvalues range
A	Adjacency matrix	[-max(A), max(A)] (also see Bhunia <i>et al.</i> 2019)
D - A	Laplacian	[0 , 2 max(<i>A</i>)]
$\frac{I - D^{-1/2}AD^{-1/2}}{(\text{or } D^{-1/2}(D - A)D^{-1/2})}$	Normalized Laplacian	[0, 2]
$D^{-1/2}AD^{-1/2}$	Normalized adjacency matrix (Ng, Jordan, Weiss. 2001)	These have similar eigenvectors (but differ in eigenvalues)
$I - D^{-1}A$	Random Walk Laplacian	
$I + D^{-1/2} A D^{-1/2}$	1 st order approximation GCN (Kipf and Welling. 2016)	
$\hat{A} = I + A$ $\hat{D} - \hat{A} = (D + I) - (A + I) = D - A$ $1 - \hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}$	Augmented adjacency matrix (Augmented) Laplacian Normalized augmented Laplacian	
$\widehat{D}^{-1/2}\widehat{A}\widehat{D}^{-1/2}$	Normalized augmented adjacency matrix GCN (Kipf and Welling. 2016)	[-1, 1]

Goodness of adjacency matrices

- □ The use of adjacency matrix $\hat{S}_{adj} = \theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2}$ allows GCN to be consider as spatial GNN (Gilmer *et al.* 2017)
 - Rewrite $\theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} x$ as $\hat{A} H W$ it is clear that the method is spatial

 $\Box \quad \hat{S}_{adj} = \theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} \text{ as low-pass filter (Wu et al. 2019)}$

- A filter $x * g = Ug_{\theta}U^{\top}x$ projects x into the eigenbasis U
 - Adjacency matrices filters x through only the low frequency (global) eigenvectors
- Two contributing factors
 - 1. Effects of stacking multiple layers
 - 2. Effects of augmentation

Goodness of adjacency matrices

$\Box \quad \hat{S}_{adj} = \theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} \text{ as low-pass filter (Wu et al. 2019)}$

1. Effects of stacking multiple layers

- □ As mentioned, $(\hat{S}_{adj})^k = \theta^k U (2 \Lambda)^k U^\top$
- □ At high k, values of $(2 \Lambda)^k$ for $(2 \Lambda) \ll 1$ diminish

Filter	Eigenvalues (using the Karate club graph for L)
L ⁶	25.41, 17.54, 15.76, 14.95, 11.26, 9.24, 8.09, 7.31, 6.1, 4.16, 2.43, 1.82, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.56, 0.42, 0.31, 0.21, 0.16, 0.13, 0.07, 0.05, 0, 0, 0, 0
$(S_{1-\text{order}})^6$	64, 42.45, 25.26, 17.59, 7.14, 6.08, 4.67, 4., 3.45, 2.66, 2.14, 1.71, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$(\hat{S}_{\rm adj})^6$	1, 0.52, 0.22, 0.12, 0.03, 0.02, 0.01, 0.01, 0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
= Figenvalue of 1 for $(\hat{S}_{ij})^6$ corresponds to the eigenvalue	

- Eigenvalue of 1 for $(\hat{S}_{adj})^6$ corresponds to the eigenvalue of 0 for $L \Rightarrow$ low frequency (low-pass) filter
- The same cannot be achieved with L because of the range of eigenvalues

Goodness of adjacency matrices

- □ $\hat{S}_{adj} = \theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2}$ as low-pass filter (Wu *et al.* 2019) 2. Effects of augmentation
 - An adjacency matrix with augmentation (self-loops) has a smaller spectrum than one without (that is, the normalized adjacency matrix $D^{-1/2}AD^{-1/2}$)
 - **Theorem** (Wu *et al.* 2019). Let *A* (and *D*) be the adjacency matrix (and degree matrix) of an undirected, weighted, simple connected graph *G*. Let $\hat{A} = A + \gamma I$, $\gamma > 0$ and let \hat{D} be its degree matrix. Let
 - \$\lambda_n/\lambda_1\$ be the min/max eigenvalues of \$D^{-1/2}AD^{-1/2}\$
 \$\lambda_n/\lambda_1\$ be the min/max eigenvalues of \$\begin{subarray}{l} D^{-1/2} \lambda D \begin{subarray}{l} D^
 - ⇒ Eigenvalues of $\hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}$ range in [λ ,1] for some $\lambda > -1 \Rightarrow$ No exponential increase at large k

More levels of augmentation

- Extend augmentation $\hat{A} = A + I$ to more levels
 - Consider $\hat{A}_{\gamma} = A + \gamma I$ for different values of γ
 - The larger the value γ , the smaller the spectrum

Theorem (Hoang and Maehara, 2019). Let

$$\hat{A}_{\gamma} = A + \gamma I \text{ for } \gamma > 0$$

\$\hat{D}_{\gamma}\$ be the degree matrix for \$\hat{A}_{\gamma}\$
 \$\lambda_{\gamma}^{(i)}\$ be the \$i^{th}\$ largest eigenvalue of \$\hat{D}_{\gamma}^{-1/2} \hat{A}_{\gamma} \hat{D}_{\gamma}^{-1/2}\$
 Then for \$0 \le \gamma' < \gamma, \$\lambda_{\gamma'}^{(i)} < \lambda_{\gamma'}^{(i)} \le \lambda_{\gamma'}^{(i)} = \lambda_{\gamma'}^{(1)} = 1\$

Corollary. $\gamma > \gamma' \Rightarrow [\lambda_{\gamma}^{(n)}, \lambda_{\gamma}^{(1)}]$ is smaller than $[\lambda_{\gamma'}^{(n)}, \lambda_{\gamma'}^{(1)}]$

 Eigenvectors would change as well but that trend is less well understood

Eigenvalues after augmentation

- Eigenvalues of $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2}$ for the Karate club
 - All eigenvalues except
 1 diminishes quickly when raised to some power
 - Negative eigenvalues will dovetail between negative and positive as the power changes between odd and even numbers
- At some γ value, the range becomes close to [0, 1]
 - In the present example, $\gamma = 4.5$

γ	Eigenvalues of $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2}$	Range
0.0	1.0 , 0.868, 0.713,, -0.583, -0.612, -0.715	[-0.715, 1.0]
0.5	1.0 , 0.884, 0.747,, -0.391, -0.435, -0.542	[-0.542, 1.0]
1.0	1.0, 0.896, 0.774,, -0.271, -0.312, -0.420	[-0.420, 1.0]
1.5	1.0, 0.906, 0.796,, -0.182, -0.220, -0.325	[-0.325, 1.0]
2.0	1.0, 0.915, 0.815,, -0.113, -0.149, -0.249	[-0.249, 1.0]
2.5	1.0, 0.922, 0.830,, -0.057, -0.089, -0.184	[-0.184, 1.0]
3.0	1.0, 0.928, 0.843,, -0.010, -0.039, -0.129	[-0.129, 1.0]
3.5	1.0, 0.933, 0.854,, 0.032, 0.004, -0.080	[-0.080, 1.0]
4.0	1.0, 0.937, 0.864,, 0.069, 0.042, -0.037	[-0.037, 1.0]
4.5	1.0, 0.941, 0.873,, 0.103, 0.076, 0.000	[0.000, 1.0]
5.0	1.0, 0.945, 0.881,, 0.134, 0.106, 0.036	[0.036, 1.0]
5.5	1.0, 0.948, 0.888,, 0.163, 0.133, 0.067	[0.067, 1.0]
6.0	1.0, 0.950, 0.894,, 0.190, 0.158, 0.096	[0.096, 1.0]
6.5	1.0, 0.953, 0.899,, 0.215, 0.181, 0.123	[0.123, 1.0]
7.0	1.0, 0.955, 0.904,, 0.239, 0.203, 0.148	[0.147, 1.0]
7.5	1.0, 0.957, 0.909,, 0.261, 0.223, 0.170	[0.170, 1.0]
8.0	1.0, 0.959, 0.913,, 0.282, 0.242, 0.192	[0.192, 1.0]

Eigenvectors after augmentation

- Eigenvectors of $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2} \text{ for the}$ Karate club
- Deviation from D^{-1/2}AD^{-1/2}
 becomes very significant as γ increases beyond 1

γ	Eigenvector of $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2}$ of largest eigenvalue (=1)
0.0	0.320, 0.240, 0.253, 0.196,, 0.160, 0.196, 0.277, 0.330
0.5	0.309, 0.234, 0.246, 0.194,, 0.161, 0.194, 0.269, 0.318
1.0	0.299, 0.229, 0.241, 0.192,, 0.162, 0.192, 0.262, 0.308
1.5	0.291, 0.225, 0.236, 0.190,, 0.163, 0.190, 0.255, 0.299
2.0	0.283, 0.222, 0.231, 0.189,, 0.164, 0.189, 0.250, 0.291
2.5	0.277, 0.218, 0.228, 0.188,, 0.164, 0.188, 0.245, 0.284
3.0	0.271, 0.216, 0.224, 0.187,, 0.165, 0.187, 0.241, 0.278
3.5	-0.266, -0.213, -0.222, -0.186,, -0.165, -0.186, -0.237, -0.273
4.0	-0.262, -0.211, -0.219, -0.185,, -0.166, -0.185, -0.234, -0.268
4.5	-0.258, -0.209, -0.217, -0.184,, -0.166, -0.184, -0.231, -0.264
5.0	-0.254, -0.207, -0.215, -0.184,, -0.166, -0.184, -0.228, -0.260
5.5	-0.250, -0.206, -0.213, -0.183,, -0.166, -0.183, -0.226, -0.256
6.0	-0.247, -0.204, -0.211, -0.183,, -0.167, -0.183, -0.224, -0.253
6.5	-0.244, -0.203, -0.209, -0.182,, -0.167, -0.182, -0.222, -0.250
7.0	-0.242, -0.202, -0.208, -0.182,, -0.167, -0.182, -0.220, -0.247
7.5	0.239, 0.200, 0.206, 0.181,, 0.167, 0.181, 0.218, 0.244
8.0	-0.237, -0.199, -0.205, -0.181,, -0.167, -0.181, -0.216, -0.242

Eigenvectors after augmentation

- Eigenvectors of $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2} \text{ for the}$ Karate club
- Deviation from D^{-1/2}AD^{-1/2}
 becomes very significant as γ increases beyond 1

γ	Eigenvector of $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2}$ of smallest eigenvalue
0.0	0.221, 0.185, 0.035, 0.019,, -0.164, -0.199, 0.410, 0.473
0.5	0.247, 0.198, 0.033, 0.015,, -0.169, -0.228, 0.410, 0.501
1.0	0.273, 0.197, 0.031, 0.009,, -0.166, -0.242, 0.404, 0.524
1.5	0.295, 0.190, 0.029, 0.004,, -0.161, -0.249, 0.396, 0.545
2.0	-0.315, -0.180, -0.028, 0.001,, 0.154, 0.251, -0.386, -0.566
2.5	0.333, 0.168, 0.027, -0.006,, -0.147, -0.250, 0.373, 0.585
3.0	0.349, 0.157, 0.027, -0.009,, -0.141, -0.247, 0.358, 0.604
3.5	0.364, 0.145, 0.027, -0.012,, -0.135, -0.243, 0.342, 0.621
4.0	0.377, 0.134, 0.027, -0.015,, -0.129, -0.239, 0.326, 0.637
4.5	-0.388, -0.124, -0.028, 0.017,, 0.124, 0.234, -0.308, -0.653
5.0	-0.398, -0.114, -0.029, 0.019,, 0.119, 0.229, -0.291, -0.667
5.5	-0.406, -0.105, -0.030, 0.020,, 0.115, 0.224, -0.274, -0.680
6.0	-0.413, -0.097, -0.031, 0.021,, 0.110, 0.219, -0.257, -0.692
6.5	-0.418, -0.089, -0.031, 0.022,, 0.107, 0.214, -0.241, -0.703
7.0	-0.422, -0.082, -0.032, 0.023,, 0.104, 0.209, -0.226, -0.714
7.5	0.425, 0.076, 0.033, -0.024,, -0.101, -0.204, 0.211, 0.723
8.0	-0.427, -0.070, -0.034, 0.024,, 0.098, 0.200, -0.197, -0.733

Low-pass filter performance

- □ We need to first find out how well a low-pass filter perform
- Construct such a filter (of only low frequency eigenvectors)
 - Recall that $x * g = Ug_{\theta}U^{\top}x$ where $U = [\mu_1, \mu_2, ...]$

$$\square \quad g_{\theta} = \operatorname{diag}(\boldsymbol{U}^{\mathsf{T}}\boldsymbol{g}) = \begin{bmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$$

Each g_i weights the significance of eigenvector μ_i

Obtain U from decomposition of normalized Laplacian

- The eigenvalues are in the range of [0,2] where 0 has the lowest frequency (global) and 2 has the highest frequency
- Sort eigenvectors by the eigenvalues and include only low frequency eigenvectors in filter UIU^{T} (details in later slide)
 - The use of I as g_{θ} implies that all eigenvectors included are equal
 - Alternatively let $g_i = 2 \lambda_i$ so smaller eigenvalues are more significant
- Compare effects of including only low frequency eigenvectors versus using all eigenvectors

Low-pass filter performance

Cora dataset

- Nodes: 2708 scientific publications
- Links: 5429
- Feature: 1433 word embedding
- Classes: 7

Procedure

- Filter features with 50, 100, 150, ... eigenvectors of the lowest frequencies
- Train a 2-layer MLP to classify with the filtered features

Number of eigenvectors used in filtering

Adjacency matrix performance

Repeat test with $\widehat{D}_{\gamma}^{-1/2} \widehat{A}_{\gamma} \widehat{D}_{\gamma}^{-1/2}$ where $\widehat{A}_{\gamma} = A + \gamma I$ as filter

- Accuracies obtained comparable to low-pass filters
- □ Increasing amount of augmentation γ improves accuracy
- □ Stacking more layers helps but only to a certain extend

© 2022. Ng Yen Kaow

Filter with only subset eigenvectors

□ Recall from earlier slide

 Π^{T}

$$\boldsymbol{U}^{\mathsf{T}}\boldsymbol{x} = \begin{bmatrix} \leftarrow & \mu_1 & \rightarrow \\ \leftarrow & \mu_2 & \rightarrow \\ & \vdots & \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} \mu_1^{\mathsf{T}}\boldsymbol{x} \\ \mu_2^{\mathsf{T}}\boldsymbol{x} \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix}$$

 \Box Examine the exact form of a_i

• Denote
$$x = \begin{bmatrix} \leftarrow x_1 & \rightarrow \\ \leftarrow x_2 & \rightarrow \\ \vdots & \end{bmatrix}$$
, where each $x_i = \begin{bmatrix} x_{i1} & x_{i2} & \cdots & x_{iM} \end{bmatrix}$
 $\begin{bmatrix} \leftarrow & \mu_1 & \rightarrow \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1M} \end{bmatrix} \begin{bmatrix} \mu_1^{\mathsf{T}} x_{*1} & \mu_1^{\mathsf{T}} x_{*2} & \cdots & \mu_1^{\mathsf{T}} x_{*N} \end{bmatrix}$

$$\begin{array}{cccc} \mathbf{x} = \begin{bmatrix} \leftarrow & \mu_2 & \rightarrow \\ & \vdots & \end{bmatrix} \begin{bmatrix} x_{21} & x_{22} & \cdots & x_{2M} \\ & \vdots & \end{bmatrix} = \begin{bmatrix} \mu_1^{\mathsf{T}} x_{*1} & \mu_2^{\mathsf{T}} x_{*2} & \cdots & \mu_1^{\mathsf{T}} x_{*M} \\ \vdots & \vdots & \vdots & \vdots \\ \Rightarrow a_i = \begin{bmatrix} \mu_i^{\mathsf{T}} x_{*1} & \mu_i^{\mathsf{T}} x_{*2} & \cdots & \mu_i^{\mathsf{T}} x_{*M} \end{bmatrix}$$

- a_i is computed from all rows and columns of x
- For $\mu_i^T x_{**}$ to compute correctly indices of μ_i^T and x_{**} must match
- However, the ordering of μ_1, μ_2, \dots in $\begin{bmatrix} \leftarrow & \mu_1 & \rightarrow \\ \leftarrow & \mu_2 & \rightarrow \\ \vdots & \vdots \end{bmatrix}$ does not matter
 - To use only some eigenvectors, simply zero out the unused eigenvectors (corresponding a_is will become zero)
 - Or just remove those unused eigenvectors