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GNN history
1998

2012
2013

2014
2015

LeNet-5

AlexNet (U of T) wins ILSVRC

ZFNet (NYU) wins ILSVRC
GoogLeNet and VGGNet wins ILSVRC

ResNet wins ILSVRC

1997

2005
2009

2010

2013

2015

2016

2017
2018

Sperduti and Starita Supervised neural networks for the classification of structures

Gori et al. A new model for learning in graph domains
Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory
Micheli Neural networks for graph: A contextual constructive approach
Gallicchio and Micheli Graph echo state networks

Shuman et al. The emerging field of signal processing on graphs
Bruna et al. Spectral networks and locally-connected networks on graphs

Henaff et al. Deep convolutional networks on graph-structured data

Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering
Kipf and Welling Semi-supervised classification with graph convolutional networks
Atwood and Towsley Diffusion-convolutional neural networks
Niepert et al. Learning convolutional neural networks for graphs
Gilmer et al. Neural message passing for quantum chemistry
Battaglia et al. Relational inductive biases, deep learning, and graph networks

RecGNN
Graph Fourier Transform

Spectral ConvGNN
Spatial ConvGNN
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RecGNN
Graph Fourier Transform

Spectral ConvGNN
Spatial ConvGNN

GNN history (significant eras)
1998

2012
2013

2014
2015

LeNet-5

AlexNet (U of T) wins ILSVRC

ZFNet (NYU) wins ILSVRC
GoogLeNet and VGGNet wins ILSVRC

ResNet wins ILSVRC

1997

2005
2009

2010

2013

2015

2016

2017
2018

Sperduti and Starita Supervised neural networks for the classification of structures

Gori et al. A new model for learning in graph domains
Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory
Micheli Neural networks for graph: A contextual constructive approach
Gallicchio and Micheli Graph echo state networks

Shuman et al. The emerging field of signal processing on graphs
Bruna et al. Spectral networks and locally-connected networks on graphs

Henaff et al. Deep convolutional networks on graph-structured data

Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering
Kipf and Welling Semi-supervised classification with graph convolutional networks
Atwood and Towsley Diffusion-convolutional neural networks
Niepert et al. Learning convolutional neural networks for graphs
Gilmer et al. Neural message passing for quantum chemistry
Battaglia et al. Relational inductive biases, deep learning, and graph networks

• Theory of spectral 
domain filters

• Idea of graph-based 
convolution

• Spectral domain 
filters as NNs and 
their approximation 
techniques

• Adding up neighbors 
is all you need
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GNN history (the people behind)
1998

2012
2013

2014
2015

LeNet-5

AlexNet (U of T) wins ILSVRC

ZFNet (NYU) wins ILSVRC
GoogLeNet and VGGNet wins ILSVRC

ResNet wins ILSVRC

1997

2005
2009

2010

2013

2015

2016

2017
2018

Sperduti and Starita Supervised neural networks for the classification of structures

Gori et al. A new model for learning in graph domains (first use of the term GNN)
Scarselli et al. The graph neural network model
Hammond et al. Wavelets on graph via spectral graph theory
Micheli Neural networks for graph: A contextual constructive approach
Gallicchio and Micheli Graph echo state networks

Shuman et al. The emerging field of signal processing on graphs
Bruna et al. Spectral networks and locally-connected networks on graphs

Henaff et al. Deep convolutional networks on graph-structured data

Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering
Kipf and Welling Semi-supervised classification with graph convolutional networks (GCN)
Atwood and Towsley Diffusion-convolutional neural networks
Niepert et al. Learning convolutional neural networks for graphs
Gilmer et al. Neural message passing for quantum chemistry
Battaglia et al. Relational inductive biases, deep learning, and graph networks

RecGNN
Graph Fourier Transform

Spectral ConvGNN
Spatial ConvGNN

Google

Google

LeCun

Google

Microsoft

Sutskever+Hinton

LeCun

LeCun

Google

LeCun, sort of
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Graph Fourier transform
 Let 𝑈𝑈 be a eigenbasis of some Laplacian 𝐿𝐿
 Then 𝑈𝑈⊤𝑥𝑥 is a projection of distribution 𝑥𝑥 on 

eigenbasis 𝑈𝑈

 𝑈𝑈⊤𝑥𝑥 =
← 𝜇𝜇1 →
← 𝜇𝜇2 →

⋮
𝑥𝑥 =

𝜇𝜇1⊤𝑥𝑥
𝜇𝜇2⊤𝑥𝑥
⋮

=
𝑎𝑎1
𝑎𝑎2
⋮

= �̇�𝑥

where 𝑎𝑎𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑥𝑥 is the projection onto 𝜇𝜇𝑖𝑖
 The projected space is ∑𝑖𝑖 𝑎𝑎𝑖𝑖𝜇𝜇𝑖𝑖

Hammond et al. Wavelets on graphs via spectral graph theory, 2009 

𝑥𝑥 and 𝐻𝐻 will be used 
interchangeably here 

dimension of 
Fourier space

(= #eigenvectors)
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Graph Fourier transform
 Let 𝑈𝑈 be a eigenbasis of some Laplacian 𝐿𝐿
 Then 𝑈𝑈⊤𝑥𝑥 is a projection of distribution 𝑥𝑥 on 

eigenbasis 𝑈𝑈
 An application of 𝑈𝑈 would transform �̇�𝑥 back into 𝑥𝑥

𝑈𝑈�̇�𝑥 =
↑
𝜇𝜇1
↓

↑
𝜇𝜇2
↓

…
𝑎𝑎1
𝑎𝑎2
⋮

=
𝜇𝜇11𝑎𝑎1 + 𝜇𝜇21𝑎𝑎2 + ⋯
𝜇𝜇12𝑎𝑎1 + 𝜇𝜇22𝑎𝑎2 + ⋯

⋮
= 𝜇𝜇1𝑎𝑎1 + 𝜇𝜇2𝑎𝑎2 + ⋯ = 𝜇𝜇1𝜇𝜇1⊤𝑥𝑥 + 𝜇𝜇2𝜇𝜇2⊤𝑥𝑥 + ⋯

= ∑𝑖𝑖 𝜇𝜇𝑖𝑖𝜇𝜇𝑖𝑖⊤ 𝑥𝑥 = 𝐼𝐼𝑥𝑥 = 𝑥𝑥
Homework: prove ∑𝑖𝑖 𝜇𝜇𝑖𝑖𝜇𝜇𝑖𝑖⊤ = 𝐼𝐼
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Graph Fourier transform
 Let 𝑈𝑈 be a eigenbasis of some Laplacian 𝐿𝐿
 Then 𝑈𝑈⊤𝑥𝑥 is a projection of distribution 𝑥𝑥 on 

eigenbasis 𝑈𝑈
 An application of 𝑈𝑈 would transform �̇�𝑥 back into 𝑥𝑥, 

𝑈𝑈 �̇�𝑥 = 𝑈𝑈 𝑈𝑈⊤𝑥𝑥 = 𝑥𝑥 (obvious since 𝑈𝑈𝑈𝑈⊤ = 𝐼𝐼)

 Denote 𝑈𝑈⊤𝑥𝑥 as 𝐹𝐹(𝑥𝑥) and 𝑈𝑈�̇�𝑥 as 𝐹𝐹−1(�̇�𝑥)
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Graph Fourier transform
 A convolution of 𝑥𝑥 in the Fourier domain of a graph 𝐺𝐺 is 

𝑥𝑥 ∗ 𝑔𝑔 = 𝐹𝐹−1 𝐹𝐹 𝑥𝑥 ⊙ 𝐹𝐹 𝑔𝑔 = 𝑈𝑈 𝑈𝑈⊤𝑥𝑥 ⊙ 𝑈𝑈⊤𝑔𝑔
where 𝑈𝑈 is the eigenbasis of some Laplacian of 𝐺𝐺,
𝑔𝑔 is some filter that works on the eigenbasis 𝑈𝑈,
and ⊙ is the element-wise (Hadamard) product

 Suppose 𝑈𝑈⊤𝑔𝑔 =
𝑔𝑔1
𝑔𝑔2
⋮

. Let 𝑔𝑔𝜃𝜃 = diag 𝑈𝑈⊤𝑔𝑔 =
𝑔𝑔1 0 0
0 𝑔𝑔2 0
0 0 ⋱

Then we can write 𝑥𝑥 ∗ 𝑔𝑔 = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈⊤𝑥𝑥 (shown below)
 Each 𝑔𝑔𝑖𝑖 weights the significance of the eigenvector 𝜇𝜇𝑖𝑖
 𝑔𝑔𝜃𝜃 is to be inferred

Henaff et al. Deep Convolutional Networks on Graph-Structured Data, 2013 

𝑈𝑈⊤𝑥𝑥 ⊙𝑈𝑈⊤𝑔𝑔 =
𝑎𝑎1
𝑎𝑎2
⋮

⊙
𝑔𝑔1
𝑔𝑔2
⋮

=
𝑎𝑎1𝑔𝑔1
𝑎𝑎2𝑔𝑔2
⋮

𝑔𝑔𝜃𝜃𝑈𝑈⊤𝑥𝑥 =
𝑔𝑔1 0 0
0 𝑔𝑔2 0
0 0 ⋱

𝑎𝑎1
𝑎𝑎2
⋮

=
𝑎𝑎1𝑔𝑔1
𝑎𝑎2𝑔𝑔2
⋮

 This inference task 
results in the spectral 
GNNs
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Spectral GNN
 The spectral GNN task of learning a function 𝑓𝑓 and 

filter 𝑔𝑔 for graph 𝐺𝐺, is to infer 𝑓𝑓 and the coefficients 𝑔𝑔1, 
𝑔𝑔2, …, such that for each 𝑥𝑥, 𝑓𝑓(𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈⊤𝑥𝑥) matches the 
desired output
 These GNNs work in the spectral domain as opposed 

to the spatial domain of the graph
 𝑔𝑔𝜃𝜃 is to be independent of the eigenvectors 𝑈𝑈

 That is, 𝑔𝑔𝜃𝜃 𝐿𝐿 = 𝑔𝑔𝜃𝜃 𝑈𝑈Λ𝑈𝑈⊤ = 𝑈𝑈𝑔𝑔𝜃𝜃 Λ 𝑈𝑈⊤𝑥𝑥 where 𝐿𝐿 is some 
Laplacian for 𝐺𝐺

 Of course, 𝑔𝑔𝜃𝜃 may turn out to be independent of Λ
 In which case, 𝑔𝑔𝜃𝜃 is inferred solely from the examples

 In spectral GNNs we learn which eigenvectors to use from 
examples in a supervised learning
 In spectral clustering we take the eigenvectors of the slowest 

growth (hence more “global”) and perform unsupervised learning 
with those vectors
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Chebyshev approximation for 𝑈𝑈
 However, computing 𝑈𝑈 is 𝑂𝑂 𝑁𝑁3 and computing 𝑈𝑈⊤𝑥𝑥 is 

𝑂𝑂 𝑁𝑁2 ⇒ expensive
 Approximate 𝑔𝑔𝜃𝜃 with Chebyshev polynomials

𝑔𝑔𝜃𝜃 Λ ≈ 𝑔𝑔𝜃𝜃′ Λ = �
𝑖𝑖=0

𝐾𝐾

𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �Λ

where
 �Λ = 2

𝜆𝜆max
Λ − 𝐼𝐼 (𝜆𝜆max is the largest eigenvalue)

 𝜃𝜃′ ∈ ℝ𝐾𝐾 are Chebyshev coefficients, and
 The polynomials 𝑇𝑇𝑖𝑖 𝑥𝑥 are computed with a recurrence 

relation
 𝑇𝑇0 𝑥𝑥 = 1, 𝑇𝑇1 𝑥𝑥 = 𝑥𝑥 (base case) 
 𝑇𝑇𝑛𝑛+1 𝑥𝑥 = 2𝑥𝑥 𝑇𝑇𝑛𝑛 𝑥𝑥 − 𝑇𝑇𝑛𝑛−1 𝑥𝑥

 𝐾𝐾 is the number of expansion terms
Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016 
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Chebyshev approximation for 𝑈𝑈
 However, computing 𝑈𝑈 is 𝑂𝑂 𝑁𝑁3 and computing 𝑈𝑈⊤𝑥𝑥 is 

𝑂𝑂 𝑁𝑁2 ⇒ expensive
 Approximate 𝑔𝑔𝜃𝜃 with Chebyshev polynomials

𝑔𝑔𝜃𝜃 Λ ≈ 𝑔𝑔𝜃𝜃′ Λ = �
𝑖𝑖=0

𝐾𝐾

𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �Λ

 Then

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈⊤𝑥𝑥 ≈ 𝑈𝑈 �
𝑖𝑖=0

𝐾𝐾

𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �Λ 𝑈𝑈⊤𝑥𝑥

 Since 𝑈𝑈𝑇𝑇 �Λ 𝑈𝑈⊤ = 2
𝜆𝜆max

𝑈𝑈Λ𝑈𝑈⊤ − 𝐼𝐼𝑈𝑈𝑈𝑈⊤ = 2
𝜆𝜆max

𝐿𝐿 − 𝐼𝐼

Write �𝐿𝐿 = 2
𝜆𝜆max

𝐿𝐿 − 𝐼𝐼 and   𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 ≈ ∑𝑖𝑖=0𝐾𝐾 𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥
Chebyshev approximation
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Chebyshev approximation for 𝑈𝑈
 𝑇𝑇𝑛𝑛, the 𝑛𝑛th order coefficient of the 

Chebyshev polynomials of the first kind, is 
𝑇𝑇𝑛𝑛 cos𝜃𝜃 = cos𝑛𝑛𝜃𝜃

 The coefficients can be obtained using the 
recurrence relation

cos 𝑛𝑛 + 1 𝜃𝜃 + cos 𝑛𝑛 − 1 𝜃𝜃 = 2 cos𝜃𝜃 cos𝑛𝑛𝜃𝜃
⇒ 𝑇𝑇𝑛𝑛+1 𝑥𝑥 = 2𝑥𝑥 𝑇𝑇𝑛𝑛 𝑥𝑥 − 𝑇𝑇𝑛𝑛−1 𝑥𝑥

 cos0𝜃𝜃 = 1
 cos1𝜃𝜃 = cos𝜃𝜃
 cos2𝜃𝜃 = 2 cos2 𝜃𝜃 − 1
 cos 3𝜃𝜃 = 4 cos3 𝜃𝜃 − 3 cos𝜃𝜃

⇒ 𝑇𝑇0 𝑥𝑥 = 1
⇒ 𝑇𝑇1 𝑥𝑥 = 𝑥𝑥
⇒ 𝑇𝑇2 𝑥𝑥 = 2𝑥𝑥2 − 1
⇒ 𝑇𝑇3 𝑥𝑥 = 4𝑥𝑥3 − 3𝑥𝑥

1st order

2nd order

0th order

3rd order
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Chebyshev approximation for 𝑈𝑈
 Chebyshev approximation has 

 To compute 𝑇𝑇𝑖𝑖 �𝐿𝐿 , use the Chebyshev recurrence

𝑇𝑇0 �𝐿𝐿 = 1, 𝑇𝑇1 �𝐿𝐿 = �𝐿𝐿, 𝑇𝑇𝑛𝑛+1 �𝐿𝐿 = 2 �𝐿𝐿 𝑇𝑇𝑛𝑛 �𝐿𝐿 − 𝑇𝑇𝑛𝑛−1(�𝐿𝐿)

 Denote �̅�𝑥𝑘𝑘 = 𝑇𝑇𝑘𝑘 �𝐿𝐿 𝑥𝑥, this becomes
�̅�𝑥𝑛𝑛+1 = 2 �𝐿𝐿 �̅�𝑥𝑛𝑛 − �̅�𝑥𝑛𝑛−1 (or �̅�𝑥𝑛𝑛 = 2 �𝐿𝐿 �̅�𝑥𝑛𝑛−1 − �̅�𝑥𝑛𝑛−2)

 Then, 

 Can be computed in 𝑂𝑂 𝐾𝐾 𝐸𝐸 time from �𝐿𝐿
 Precompute the 𝐾𝐾 vectors �̅�𝑥0, …, �̅�𝑥𝐾𝐾, with the recurrence 

relation, and learn the scalars 𝜃𝜃0′ , …, 𝜃𝜃𝐾𝐾′

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 ≈�
𝑖𝑖=0

𝐾𝐾

𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥 = 𝜃𝜃0′ … 𝜃𝜃𝐾𝐾′
�̅�𝑥0
⋮
�̅�𝑥𝐾𝐾

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 ≈�
𝑖𝑖=0

𝐾𝐾

𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥
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𝐾𝐾 = 1 (GCN) approximations
 Chebyshev approximation has 

 GCN takes 𝐾𝐾 = 1 to obtain

 Since 𝜆𝜆max = 2 we get 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ ≈ 𝜃𝜃0′𝑥𝑥 + 𝜃𝜃1′ 𝐿𝐿 − 𝐼𝐼𝑁𝑁 𝑥𝑥
 𝜃𝜃0′ and 𝜃𝜃1′ are parameters to be learned

 On the unweighted normalized Laplacian 
𝐿𝐿 = 𝐷𝐷− ⁄1 2 𝐷𝐷 − 𝐴𝐴 𝐷𝐷−1/2 = 𝐼𝐼 − 𝐷𝐷−1/2𝐴𝐴𝐷𝐷−1/2, this becomes 

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ = 𝜃𝜃0′𝑥𝑥 − 𝜃𝜃1′𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2𝑥𝑥
 Further constraint the number of parameters by letting 

𝜃𝜃0′ = −𝜃𝜃1′= 𝜃𝜃

Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, 2016 

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ = 𝜃𝜃 𝐼𝐼 + 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 𝑥𝑥

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ ≈ 𝜃𝜃0′𝑥𝑥 + 𝜃𝜃1′ �𝐿𝐿𝑥𝑥 = 𝜃𝜃0′𝑥𝑥 + 𝜃𝜃1′
2

𝜆𝜆max
𝐿𝐿 − 𝐼𝐼𝑁𝑁 𝑥𝑥

GCN 1st order 
approximation

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 ≈�
𝑖𝑖=0

𝐾𝐾

𝜃𝜃𝑖𝑖′ 𝑇𝑇𝑖𝑖 �𝐿𝐿 𝑥𝑥
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𝐾𝐾 = 1 (GCN) approximations
 However, since 𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2

⇒ 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ = 𝜃𝜃 𝐼𝐼 + 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 𝑥𝑥 = 𝜃𝜃 2𝐼𝐼 − 𝐿𝐿 𝑥𝑥
 Then, multiple applications of 𝜃𝜃 2𝐼𝐼 − 𝐿𝐿 would result in

𝜃𝜃𝑘𝑘 2𝐼𝐼 − 𝐿𝐿 𝑘𝑘𝑥𝑥 = 𝜃𝜃𝑘𝑘𝑈𝑈 2 − Λ 𝑘𝑘𝑈𝑈⊤𝑥𝑥
where Λ/𝑈𝑈 are the eigenvalues/eigenvectors for 𝐿𝐿
(GCN places non-linear functions between layers which we ignore in this derivation)

 Since 𝐿𝐿 has eigenvalues in [0, 𝜆𝜆max] (where 𝜆𝜆max ≤ 2 is 
the largest eigenvalue of 𝐿𝐿)
⇒ 2 − Λ 𝑘𝑘 has range of [(2 − 𝜆𝜆max)𝑘𝑘 , 2𝑘𝑘]
⇒ Exponentially large spectral coefficients at higher 𝑘𝑘

 Solution: Let �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼 (augmentation) and normalize �̂�𝐴
(renormalization)
That is,  𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ = 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2𝑥𝑥 where �𝐷𝐷𝑖𝑖𝑖𝑖 = ∑𝑖𝑖 �̂�𝐴𝑖𝑖𝑖𝑖

Augmented adjacency matrix

Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, 2016 
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How legit are GCN approximations
 Consider the two approximations of 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 in GCN

1. 𝑆𝑆1-order = 𝜃𝜃 𝐼𝐼 + 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 , or
2. �̂�𝑆adj = 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 (�̂�𝐴 = 𝐴𝐴 + 𝐼𝐼)
where 𝜃𝜃 is a scalar to be learned

 Evaluate how well they approximate 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 in the case that
𝑔𝑔𝜃𝜃 = diag Λ , that is,

𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃 = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈⊤ 𝑥𝑥 = 𝑈𝑈Λ𝑈𝑈⊤ 𝑥𝑥 = 𝐿𝐿𝑥𝑥

 First, letting 𝜃𝜃0′ = −𝜃𝜃1′ (case of 𝑆𝑆1-order) or 𝜃𝜃0′ = 𝜃𝜃1′ would 
result in 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ having the same eigenvectors as 𝐿𝐿, that is,
 𝜃𝜃0′ = −𝜃𝜃1′ ⇒ 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ = 𝜃𝜃 2𝐼𝐼 − 𝐿𝐿 𝑥𝑥

⇒ same eigenvectors but eigenvalues become 2 − 𝜆𝜆
 𝜃𝜃0′ = 𝜃𝜃1′ ⇒ 𝑥𝑥 ∗ 𝑔𝑔𝜃𝜃′ = 𝜃𝜃𝐿𝐿𝑥𝑥

⇒ same eigenvalues/ eigenvectors
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How legit are GCN approximations
 Use the Karate club graph for 𝐿𝐿
 Comparison of eigenvectors/ eigenvalues

 𝐿𝐿 and 𝑆𝑆1-order share the same eigenvectors
 Eigenvectors of �̂�𝑆adj closely resembles those of 𝐿𝐿 and 𝑆𝑆1-order

 Evaluate MSE(𝑆𝑆1-order𝑥𝑥, 𝐿𝐿𝑥𝑥) and MSE(�̂�𝑆adj𝑥𝑥, 𝐿𝐿𝑥𝑥) on 
randomly generated 𝑥𝑥

 MSE(𝑆𝑆1-order𝑥𝑥, 𝐿𝐿𝑥𝑥) = 0.159 (obtained at 𝜃𝜃~0.1)
 MSE(�̂�𝑆adj𝑥𝑥, 𝐿𝐿𝑥𝑥) = 0.166 (obtained at 𝜃𝜃~0.07)
 MSE(random vector, 𝐿𝐿𝑥𝑥) = 0.413

 Better than random but lackluster performance due to differences 
in eigenvalues which were not remedied downstream

Filter Eigenvalues Eigenvector (corr. to smallest eigenvalue in 𝐿𝐿)

𝐿𝐿 1.71, 1.61, 1.58, 1.57, …, .39, .29, .13, 0
-.32, -.24, -.25, -.2, -.14, -.16, -.16, -.16, -.18, -.11, …,
-.14, -.14, -.11, -.16, -.14, -.16, -.16, -.2, -.28, -.33

𝑆𝑆1-order
2., 1.87, 1.71, 1.61, 1.39, …, .5, .43, .42,
.39, .29

.32, .24, .25, .2, .14, .16, .16, .16, .18, .11, …,

.14, .14, .11, .16, .14, .16, .16, .2, .28, .33

�̂�𝑆adj
1., .9, .77, .7, .55, …, -.21, -.22, -.27,
-.31,  -.42

.3, .23, .24, .19, .15, .16, .16, .16, .18, .13, …, 

.15, .15, .13, .16, .15, .16, .16, .19, .26, .31
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Name Eigenvalues range

𝐴𝐴 Adjacency matrix [-max 𝐴𝐴 , max 𝐴𝐴 ]
(also see Bhunia et al. 2019)

𝐷𝐷 − 𝐴𝐴 Laplacian [0, 2 max 𝐴𝐴 ]

𝐼𝐼 − 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2
(or 𝐷𝐷− ⁄1 2(𝐷𝐷 − 𝐴𝐴)𝐷𝐷− ⁄1 2)

Normalized Laplacian [0, 2]

𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 Normalized adjacency matrix
(Ng, Jordan, Weiss. 2001)

[-1, 1]

𝐼𝐼 − 𝐷𝐷−1𝐴𝐴 Random Walk Laplacian (non-symmetric)

𝐼𝐼 + 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 1st order approximation
GCN (Kipf and Welling. 2016)

[0, 2]
�̂�𝐴 = 𝐼𝐼 + 𝐴𝐴 Augmented adjacency matrix [-max �̂�𝐴 , max �̂�𝐴 ]
�𝐷𝐷 − �̂�𝐴 = 𝐷𝐷 + 𝐼𝐼 − 𝐴𝐴 + 𝐼𝐼 = 𝐷𝐷 − 𝐴𝐴 (Augmented) Laplacian [0, 2 max 𝐴𝐴 ]
𝐼𝐼 − �𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 Normalized augmented Laplacian [0, 2]

�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 Normalized augmented 
adjacency matrix
GCN (Kipf and Welling. 2016)

[-1, 1]

Matrices introduced so far
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Name Eigenvalues range

𝐴𝐴 Adjacency matrix [-max 𝐴𝐴 , max 𝐴𝐴 ]
(also see Bhunia et al. 2019)

𝐷𝐷 − 𝐴𝐴 Laplacian [0, 2 max 𝐴𝐴 ]

𝐼𝐼 − 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2
(or 𝐷𝐷− ⁄1 2(𝐷𝐷 − 𝐴𝐴)𝐷𝐷− ⁄1 2)

Normalized Laplacian [0, 2]

𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 Normalized adjacency matrix
(Ng, Jordan, Weiss. 2001)

[-1, 1]

𝐼𝐼 − 𝐷𝐷−1𝐴𝐴 Random Walk Laplacian (non-symmetric)

𝐼𝐼 + 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2 1st order approximation
GCN (Kipf and Welling. 2016)

[0, 2]
�̂�𝐴 = 𝐼𝐼 + 𝐴𝐴 Augmented adjacency matrix [-max �̂�𝐴 , max �̂�𝐴 ]
�𝐷𝐷 − �̂�𝐴 = 𝐷𝐷 + 𝐼𝐼 − 𝐴𝐴 + 𝐼𝐼 = 𝐷𝐷 − 𝐴𝐴 (Augmented) Laplacian [0, 2 max 𝐴𝐴 ]
𝐼𝐼 − �𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 Normalized augmented Laplacian [0, 2]

�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 Normalized augmented 
adjacency matrix
GCN (Kipf and Welling. 2016)

[-1, 1]

Matrices introduced so far

These have 
similar 

eigenvectors 
(but differ in 
eigenvalues)
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Goodness of adjacency matrices
 The use of adjacency matrix �̂�𝑆adj = 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2

allows GCN to be consider as spatial GNN (Gilmer et 
al. 2017)
 Rewrite 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2𝑥𝑥 as �̂�𝐴𝐻𝐻𝑊𝑊 it is clear that the 

method is spatial

 �̂�𝑆adj = 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 as low-pass filter (Wu et al. 2019)

 A filter 𝑥𝑥 ∗ 𝑔𝑔 = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈⊤𝑥𝑥 projects 𝑥𝑥 into the eigenbasis 𝑈𝑈
 Adjacency matrices filters 𝑥𝑥 through only the low 

frequency (global) eigenvectors
 Two contributing factors

1. Effects of stacking multiple layers
2. Effects of augmentation
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Goodness of adjacency matrices
 �̂�𝑆adj = 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 as low-pass filter (Wu et al. 2019)

1. Effects of stacking multiple layers
 As mentioned, �̂�𝑆adj

𝑘𝑘 = 𝜃𝜃𝑘𝑘𝑈𝑈 2 − Λ 𝑘𝑘𝑈𝑈⊤

 At high 𝑘𝑘, values of 2 − Λ 𝑘𝑘 for 2 − Λ ≪ 1
diminish

 Eigenvalue of 1 for (�̂�𝑆adj)6 corresponds to the eigenvalue 
of 0 for 𝐿𝐿 ⇒ low frequency (low-pass) filter

 The same cannot be achieved with 𝐿𝐿 because of the 
range of eigenvalues

Filter Eigenvalues (using the Karate club graph for 𝐿𝐿)

𝐿𝐿6 25.41, 17.54, 15.76, 14.95, 11.26, 9.24, 8.09, 7.31, 6.1, 4.16, 2.43, 1.82, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 0.56, 0.42, 0.31, 0.21, 0.16, 0.13, 0.07, 0.05, 0, 0, 0, 0

(𝑆𝑆1-order)6
64, 42.45, 25.26, 17.59, 7.14, 6.08, 4.67, 4., 3.45, 2.66, 2.14, 1.71, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 0.51, 0.35, 0.15, 0.07, 0.05, 0.04, 0.03, 0.02, 0.01, 0.01, 0, 0

(�̂�𝑆adj)6
1, 0.52, 0.22, 0.12, 0.03, 0.02, 0.01, 0.01, 0.01, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
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Goodness of adjacency matrices
 �̂�𝑆adj = 𝜃𝜃�𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 as low-pass filter (Wu et al. 2019)

2. Effects of augmentation
 An adjacency matrix with augmentation (self-loops) 

has a smaller spectrum than one without (that is, 
the normalized adjacency matrix 𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2)

 Theorem (Wu et al. 2019). Let 𝐴𝐴 (and 𝐷𝐷) be the adjacency 
matrix (and degree matrix) of an undirected, weighted, 
simple connected graph 𝐺𝐺. Let �̂�𝐴 = 𝐴𝐴 + 𝛾𝛾𝐼𝐼, 𝛾𝛾 > 0 and 
let �𝐷𝐷 be its degree matrix. Let
 𝜆𝜆𝑛𝑛/𝜆𝜆1 be the min/max eigenvalues of 𝐷𝐷−1/2𝐴𝐴𝐷𝐷−1/2

 �̂�𝜆𝑛𝑛/�̂�𝜆1 be the min/max eigenvalues of �𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2

Then 𝜆𝜆𝑛𝑛 < �̂�𝜆𝑛𝑛 < �̂�𝜆1 = 𝜆𝜆1 = 1

⇒ Eigenvalues of �𝐷𝐷−1/2�̂�𝐴�𝐷𝐷−1/2 range in [𝜆𝜆,1] for some
𝜆𝜆 > -1 ⇒ No exponential increase at large 𝑘𝑘
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More levels of augmentation
 Extend augmentation �̂�𝐴 = 𝐴𝐴 + 𝐼𝐼 to more levels
 Consider �̂�𝐴𝛾𝛾 = 𝐴𝐴 + 𝛾𝛾𝐼𝐼 for different values of 𝛾𝛾

 The larger the value 𝛾𝛾, the smaller the 
spectrum
Theorem (Hoang and Maehara, 2019). Let
 �̂�𝐴𝛾𝛾 = 𝐴𝐴 + 𝛾𝛾𝐼𝐼 for 𝛾𝛾 > 0
 �𝐷𝐷𝛾𝛾 be the degree matrix for �̂�𝐴𝛾𝛾
 𝜆𝜆𝛾𝛾

(𝑖𝑖) be the 𝑖𝑖th largest eigenvalue of �𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2

Then for 0 ≤ 𝛾𝛾′ < 𝛾𝛾, 𝜆𝜆𝛾𝛾′
𝑖𝑖 < 𝜆𝜆𝛾𝛾

𝑖𝑖 ≤ 𝜆𝜆𝛾𝛾′
1 = 𝜆𝜆𝛾𝛾

1 = 1

Corollary. 𝛾𝛾 > 𝛾𝛾′ ⇒ [𝜆𝜆𝛾𝛾
𝑛𝑛 , 𝜆𝜆𝛾𝛾

1 ] is smaller than [𝜆𝜆𝛾𝛾′
𝑛𝑛 , 𝜆𝜆𝛾𝛾′

1 ]

 Eigenvectors would change as well but that trend is 
less well understood
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Eigenvalues after augmentation
 Eigenvalues of 

�𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2 for the 
Karate club

 All eigenvalues except 
1 diminishes quickly 
when raised to some 
power

 Negative eigenvalues 
will dovetail between 
negative and positive 
as the power changes 
between odd and even 
numbers

 At some 𝛾𝛾 value, the 
range becomes close 
to [0, 1]
 In the present 

example, 𝛾𝛾 = 4.5

𝛾𝛾 Eigenvalues of �𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2 Range

0.0 1.0, 0.868, 0.713, ..., -0.583, -0.612, -0.715 [-0.715, 1.0]

0.5 1.0, 0.884, 0.747, ..., -0.391, -0.435, -0.542 [-0.542, 1.0]

1.0 1.0, 0.896, 0.774, ..., -0.271, -0.312, -0.420 [-0.420, 1.0]
1.5 1.0, 0.906, 0.796, ..., -0.182, -0.220, -0.325 [-0.325, 1.0]

2.0 1.0, 0.915, 0.815, ..., -0.113, -0.149, -0.249 [-0.249, 1.0]

2.5 1.0, 0.922, 0.830, ..., -0.057, -0.089, -0.184 [-0.184, 1.0]

3.0 1.0, 0.928, 0.843, ..., -0.010, -0.039, -0.129 [-0.129, 1.0]

3.5 1.0, 0.933, 0.854, ..., 0.032,  0.004, -0.080 [-0.080, 1.0]

4.0 1.0, 0.937, 0.864, ..., 0.069,  0.042, -0.037 [-0.037, 1.0]

4.5 1.0, 0.941, 0.873, ..., 0.103,  0.076,  0.000 [ 0.000, 1.0]
5.0 1.0, 0.945, 0.881, ..., 0.134,  0.106,  0.036 [ 0.036, 1.0]

5.5 1.0, 0.948, 0.888, ..., 0.163,  0.133,  0.067 [ 0.067, 1.0]

6.0 1.0, 0.950, 0.894, ..., 0.190,  0.158,  0.096 [ 0.096, 1.0]

6.5 1.0, 0.953, 0.899, ..., 0.215,  0.181,  0.123 [ 0.123, 1.0]

7.0 1.0, 0.955, 0.904, ..., 0.239,  0.203,  0.148 [ 0.147, 1.0]

7.5 1.0, 0.957, 0.909, ..., 0.261,  0.223,  0.170 [ 0.170, 1.0]

8.0 1.0, 0.959, 0.913, ..., 0.282,  0.242,  0.192 [ 0.192, 1.0]
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Eigenvectors after augmentation
 Eigenvectors of 

�𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2 for the 
Karate club

 Deviation from 
𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2

becomes very 
significant as 𝛾𝛾
increases beyond 1

𝛾𝛾 Eigenvector of �𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2 of largest eigenvalue (=1) 

0.0 0.320,  0.240,  0.253,  0.196, ...,  0.160,  0.196,  0.277,  0.330

0.5 0.309,  0.234,  0.246,  0.194, ...,  0.161,  0.194,  0.269,  0.318

1.0 0.299,  0.229,  0.241,  0.192, ...,  0.162,  0.192,  0.262,  0.308
1.5 0.291,  0.225,  0.236,  0.190, ...,  0.163,  0.190,  0.255,  0.299

2.0 0.283,  0.222,  0.231,  0.189, ...,  0.164,  0.189,  0.250,  0.291

2.5 0.277,  0.218,  0.228,  0.188, ...,  0.164,  0.188,  0.245,  0.284

3.0 0.271,  0.216,  0.224,  0.187, ...,  0.165,  0.187,  0.241,  0.278

3.5 -0.266, -0.213, -0.222, -0.186, ..., -0.165, -0.186, -0.237, -0.273

4.0 -0.262, -0.211, -0.219, -0.185, ..., -0.166, -0.185, -0.234, -0.268

4.5 -0.258, -0.209, -0.217, -0.184, ..., -0.166, -0.184, -0.231, -0.264
5.0 -0.254, -0.207, -0.215, -0.184, ..., -0.166, -0.184, -0.228, -0.260

5.5 -0.250, -0.206, -0.213, -0.183, ..., -0.166, -0.183, -0.226, -0.256

6.0 -0.247, -0.204, -0.211, -0.183, ..., -0.167, -0.183, -0.224, -0.253

6.5 -0.244, -0.203, -0.209, -0.182, ..., -0.167, -0.182, -0.222, -0.250

7.0 -0.242, -0.202, -0.208, -0.182, ..., -0.167, -0.182, -0.220, -0.247

7.5 0.239,  0.200,  0.206,  0.181, ...,  0.167,  0.181,  0.218,  0.244

8.0 -0.237, -0.199, -0.205, -0.181, ..., -0.167, -0.181, -0.216, -0.242
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Eigenvectors after augmentation
 Eigenvectors of 

�𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2 for the 
Karate club

 Deviation from 
𝐷𝐷− ⁄1 2𝐴𝐴𝐷𝐷− ⁄1 2

becomes very 
significant as 𝛾𝛾
increases beyond 1

𝛾𝛾 Eigenvector of �𝐷𝐷𝛾𝛾
−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾

−1/2 of smallest eigenvalue 

0.0 0.221,  0.185,  0.035,  0.019, ..., -0.164, -0.199,  0.410,  0.473

0.5 0.247,  0.198,  0.033,  0.015, ..., -0.169, -0.228,  0.410,  0.501

1.0 0.273,  0.197,  0.031,  0.009, ..., -0.166, -0.242,  0.404,  0.524
1.5 0.295,  0.190,  0.029,  0.004, ..., -0.161, -0.249,  0.396,  0.545

2.0 -0.315, -0.180, -0.028,  0.001, ...,  0.154,  0.251, -0.386, -0.566

2.5 0.333,  0.168,  0.027, -0.006, ..., -0.147, -0.250,  0.373,  0.585

3.0 0.349,  0.157,  0.027, -0.009, ..., -0.141, -0.247,  0.358,  0.604

3.5 0.364,  0.145,  0.027, -0.012, ..., -0.135, -0.243,  0.342,  0.621

4.0 0.377,  0.134,  0.027, -0.015, ..., -0.129, -0.239,  0.326,  0.637

4.5 -0.388, -0.124, -0.028,  0.017, ...,  0.124,  0.234, -0.308, -0.653
5.0 -0.398, -0.114, -0.029,  0.019, ...,  0.119,  0.229, -0.291, -0.667

5.5 -0.406, -0.105, -0.030,  0.020, ...,  0.115,  0.224, -0.274, -0.680

6.0 -0.413, -0.097, -0.031,  0.021, ...,  0.110,  0.219, -0.257, -0.692

6.5 -0.418, -0.089, -0.031,  0.022, ...,  0.107,  0.214, -0.241, -0.703

7.0 -0.422, -0.082, -0.032,  0.023, ...,  0.104,  0.209, -0.226, -0.714

7.5 0.425,  0.076,  0.033, -0.024, ..., -0.101, -0.204,  0.211,  0.723

8.0 -0.427, -0.070, -0.034,  0.024, ...,  0.098,  0.200, -0.197, -0.733
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Low-pass filter performance
 We need to first find out how well a low-pass filter perform
 Construct such a filter (of only low frequency eigenvectors)

 Recall that 𝑥𝑥 ∗ 𝑔𝑔 = 𝑈𝑈𝑔𝑔𝜃𝜃𝑈𝑈⊤𝑥𝑥 where 𝑈𝑈 = 𝜇𝜇1,𝜇𝜇2, …

 𝑔𝑔𝜃𝜃 = diag 𝑈𝑈⊤𝑔𝑔 =
𝑔𝑔1 0 0
0 𝑔𝑔2 0
0 0 ⋱

 Each 𝑔𝑔𝑖𝑖 weights the significance of eigenvector 𝜇𝜇𝑖𝑖
 Obtain 𝑈𝑈 from decomposition of normalized Laplacian

 The eigenvalues are in the range of [0,2] where 0 has the 
lowest frequency (global) and 2 has the highest frequency

 Sort eigenvectors by the eigenvalues and include only low 
frequency eigenvectors in filter 𝑈𝑈𝐼𝐼𝑈𝑈⊤ (details in later slide)
 The use of 𝐼𝐼 as 𝑔𝑔𝜃𝜃 implies that all eigenvectors included are equal
 Alternatively let 𝑔𝑔𝑖𝑖 = 2 − 𝜆𝜆𝑖𝑖 so smaller eigenvalues are more significant

 Compare effects of including only low frequency eigenvectors 
versus using all eigenvectors
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 Cora dataset 
 Nodes: 2708 scientific publications
 Links: 5429
 Feature: 1433 word embedding
 Classes: 7

 Procedure
 Filter features with 50, 100, 150, … eigenvectors of the lowest frequencies
 Train a 2-layer MLP to classify with the filtered features   

Low-pass filter performance

Number of eigenvectors used in filtering

C
la

ss
ifi

er
 a

cc
ur

ac
y

𝑔𝑔θ = 𝐼𝐼
𝑔𝑔𝑖𝑖 = 2 − 𝜆𝜆𝑖𝑖

Highest accuracy achieved 
with only the low frequency 
eigenvectors

Giving emphasis to low frequency 
eigenvectors increases accuracy
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Adjacency matrix performance
 Repeat test with �𝐷𝐷𝛾𝛾

−1/2�̂�𝐴𝛾𝛾 �𝐷𝐷𝛾𝛾
−1/2 where �̂�𝐴𝛾𝛾 = 𝐴𝐴 + 𝛾𝛾𝐼𝐼 as filter

 Accuracies obtained comparable to low-pass filters 
 Increasing amount of augmentation 𝛾𝛾 improves accuracy
 Stacking more layers helps but only to a certain extend

𝛾𝛾 = 0 𝛾𝛾 = 0.5 𝛾𝛾 = 1 𝛾𝛾 = 1.5 𝛾𝛾 = 2 𝛾𝛾 = 2.5 𝛾𝛾 = 3 𝛾𝛾 = 3.5 𝛾𝛾 = 4

Best performance 
of low-pass filter
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Filter with only subset eigenvectors
 Recall from earlier slide

𝑈𝑈⊤𝑥𝑥 =
← 𝜇𝜇1 →
← 𝜇𝜇2 →

⋮
𝑥𝑥 =

𝜇𝜇1⊤𝑥𝑥
𝜇𝜇2⊤𝑥𝑥
⋮

=
𝑎𝑎1
𝑎𝑎2
⋮

 Examine the exact form of 𝑎𝑎𝑖𝑖
 Denote 𝑥𝑥 =

← 𝑥𝑥1 →
← 𝑥𝑥2 →

⋮
, where each 𝑥𝑥𝑖𝑖 = [𝑥𝑥𝑖𝑖1 𝑥𝑥𝑖𝑖2 ⋯ 𝑥𝑥𝑖𝑖𝑖𝑖]

𝑈𝑈⊤𝑥𝑥 =
← 𝜇𝜇1 →
← 𝜇𝜇2 →

⋮

𝑥𝑥11 𝑥𝑥12 ⋯ 𝑥𝑥1𝑖𝑖
𝑥𝑥21 𝑥𝑥22 ⋯ 𝑥𝑥2𝑖𝑖

⋮
=

𝜇𝜇1⊤𝑥𝑥∗1
𝜇𝜇2⊤𝑥𝑥∗1
⋮

𝜇𝜇1⊤𝑥𝑥∗2
𝜇𝜇2⊤𝑥𝑥∗2
⋮

…
…
⋮

𝜇𝜇1⊤𝑥𝑥∗𝑖𝑖
𝜇𝜇2⊤𝑥𝑥∗𝑖𝑖
⋮

⇒ 𝑎𝑎𝑖𝑖 = [𝜇𝜇𝑖𝑖⊤𝑥𝑥∗1 𝜇𝜇𝑖𝑖⊤𝑥𝑥∗2 ⋯ 𝜇𝜇𝑖𝑖⊤𝑥𝑥∗𝑖𝑖]
 𝑎𝑎𝑖𝑖 is computed from all rows and columns of 𝑥𝑥
 For 𝜇𝜇𝑖𝑖⊤𝑥𝑥∗∗ to compute correctly indices of 𝜇𝜇𝑖𝑖⊤ and 𝑥𝑥∗∗ must match

 However, the ordering of 𝜇𝜇1, 𝜇𝜇2, … in
← 𝜇𝜇1 →
← 𝜇𝜇2 →

⋮
does not matter 

 To use only some eigenvectors, simply zero out the unused 
eigenvectors (corresponding 𝑎𝑎𝑖𝑖s will become zero)

 Or just remove those unused eigenvectors
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