Graph and Subgraph Isomorphism Using GNNs

An overview of the essential concepts in Stanford CS224W (Lectures 9 and 12) with only oversimplified examples

Ng Yen Kaow

Graph Isomorphism

\square Complexity of graph isomorphism is unknown
\square Weisfeiler-Lehman graph kernel traditionally used to obtain graph-level embedding

WL color-refinement algorithm

1. Assign initial color $c^{(0)}(v)$ to each node v
2. Iteratively refine node colors by

$$
c^{(k+1)}(v)=\operatorname{HASH}\left(c^{(k)}(v),\left\{c^{(k)}(u)\right\}_{u \in N(v)}\right)
$$

- HASH function maps input to distinct values (colors)
- After K steps, $c^{(K)}(v)$ summarizes the structure of the K-hop neighborhood
\square To run as GNN, need to implement HASH as AGG - Need notion of distinguishing node embeddings

Distinguishing node embeddings

\square Consider the task of keeping embeddings feature distinguishable
\square Two factors affect embedding

- (Initial) feature
$\square \quad$ Feature representation will affect whether features can be converted into each other

- To simplify this discussion assume that each distinct feature corresponds to one distinct dimension in the feature vector
- Neighborhood structure
$\square \quad$ Nodes with the same (initial) feature and neighborhood structure should be assigned the same embedding, and vice versa

Computing node embeddings

\square Recall that given a GCN of 2 layers, the embedding of A is computed through the computation graph as follows

Rearranged w.r.t. distance from A

Computation graph of A's embedding

Distinguishability under sum

- Let AGG=sum, then for the GCN of 2 layers, the embeddings are as follows

 let AGG be sum. Then

$$
\begin{aligned}
& \square \quad h_{\mathrm{B}}^{1}=\operatorname{AGG}\left(\left\{h_{\mathrm{A}}^{0}, h_{\mathrm{F}}^{0}, h_{\mathrm{E}}^{0}\right\},\left\{h_{\mathrm{B}}^{0}\right\}\right)=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{array} \\
& \square \quad h_{\mathrm{C}}^{1}=\operatorname{AGG}\left(\left\{h_{\mathrm{A}}^{0}, h_{\mathrm{D}}^{0}, h_{\mathrm{E}}^{0}\right\},\left\{h_{\mathrm{C}}^{0}\right\}\right)=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 1 & 1 & 0 \\
\hline
\end{array} \\
& \square \quad h_{\mathrm{D}}^{1}=\operatorname{AGG}\left(\left\{h_{\mathrm{A}}^{0}, h_{\mathrm{F}}^{0}, h_{\mathrm{C}}^{0}\right\},\left\{h_{\mathrm{D}}^{0}\right\}\right)=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 1 & 0 & 1 \\
\hline
\end{array} \\
& \square \quad h_{\mathrm{A}}^{1}=\operatorname{AGG}\left(\left\{h_{\mathrm{B}}^{0}, h_{\mathrm{C}}^{0}, h_{\mathrm{D}}^{0}\right\},\left\{h_{\mathrm{A}}^{0}\right\}\right)=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

- Finally the embedding of A is

$$
h_{\mathrm{A}}^{2}=\operatorname{AGG}\left(\left\{h_{\mathrm{B}}^{1}, h_{\mathrm{C}}^{1}, h_{\mathrm{D}}^{1}\right\},\left\{h_{\mathrm{A}}^{1}\right\}\right)=\begin{array}{|l|l|l|l|l}
\hline 4 & 2 & 3 & 3 & 2 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \left.h_{\mathrm{C}}^{2}=\begin{array}{|l|l|l|l|l|}
\hline 3 & 2 & 4 & 3 & 2
\end{array} \right\rvert\, \begin{array}{l}
1 \\
\hline
\end{array} \\
& h_{\mathrm{D}}^{2}=\begin{array}{l|l|l|l|l|l}
\hline 3 & 2 & 3 & 4 & 1 & 2 \\
\hline
\end{array} \quad\left[\begin{array}{ll}
\text { D }
\end{array} \quad\right. \text { Distinct embeddings } \\
& h_{E}^{2}=\begin{array}{|l|l|l|l|l|}
\hline 2 & 2 & 2 & 1 & 3 \\
\hline
\end{array} \\
& h_{F}^{2}=\begin{array}{|l|l|l|l|l|l|}
\hline 2 & 2 & 1 & 2 & 1 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Distinguishability under sum

- Let AGG=sum, then for the GCN of 2 layers, the embeddings are as follows

\square By induction on the respective distinct feature dimension, the embeddings will be distinct for subsequent iterations
\square If every node has distinct feature, then they have distinct embeddings under sum regardless of neighborhood structure or iterations (with the exception of the graph of only two nodes (A)-(C)

Distinguishability under sum
 \square If some nodes have the same features?

- Let $h_{\mathrm{A}}^{0}=h_{\mathrm{B}}^{0}=1000, h_{\mathrm{C}}^{0}=h_{\mathrm{D}}^{0}=010, h_{\mathrm{E}}^{0}=h_{\mathrm{F}}^{0}=0 \mid 011$, and let AGG be sum. Then, as can be seen from the following example

\square Two nodes with the same feature will have the same embedding under sum if they have the same neighborhood structure
- However different features and neighborhood structure cannot guarantee distinct embeddings

Distinguishability under sum - If some nodes have the same features?

- Different features and neighborhood structure cannot guarantee distinct embeddings for various reasons
- Complementary neighborhood structure

$\square \quad$ Hard-to-predict cases

Will A and B ever become the same again after the first step?

Distinguishability under sum \square If some nodes have the same features?

- Different features and neighborhood structure cannot guarantee distinct embeddings for various reasons
- Complementary neighborhood structure

$\square \quad$ Hard-to-predict cases

Distinguishability under mean

- Using mean as AGG results in even less desirable behavior

For instance, node A in both graphs below would give the same embedding under mean with one iteration

Distinguishability under mean

\square Using mean as AGG results in even less desirable behavior

The following example shows sum to result in more consistent embeddings than mean

Injective function for isomorphism
\square An injective function will output distinguishable embeddings for nodes of distinct feature and neighborhood structure

- sum, mean, and max are not injective
\square Theorem (xu et al. 2019). Any injective AGG function can be expressed as $\Phi\left(\sum_{x \in S} f(x)\right)$ for some nonlinear Φ and linear f
\square Since MLP is able to approximate any function, we can learn Φ and f with non-linear $\operatorname{MLP}_{\Phi}$ and linear MLP $_{f}$

$$
\mathrm{P}_{f} \mathrm{AGG}=\operatorname{MLP}_{\Phi}\left(\sum_{x \in S} \operatorname{MLP}_{f}(x)\right)
$$

Subgraph Isomorphism

\square Subgraph isomorphism is NP-complete
\Rightarrow Compare neighborhood around each node
\square The k-hop neighborhood around node $u \in Q$ is

1. All the nodes within k hops from u, and
2. All the edges in between those nodes

- Such a neighborhood is a subgraph of Q - However, not every subgraph of Q is a neighborhood of some node $u \in Q$
- At most $k|V|$ neighborhoods for each k
\square If P is a subgraph of Q, then every neighborhood of P is a subgraph of some neighborhood of Q

Order embedding space

\square Idea: We want an d-dimensional embedding space z such that for every neighborhoods $p \in P$ and $q \in Q$

$$
q \subseteq p \Leftrightarrow \forall_{i=1}^{d} z_{q}[i] \leq z_{p}[i]
$$

\square With embedding space, we can test subgraph isomorphism through the following

For each neighborhood $p \in P$ and $q \in Q$

$$
\text { If }(\exists i)\left[z_{q}[i] \leq z_{p}[i]\right] \text {, return false }
$$

Return true

Order embedding space

\square Idea: We want an d-dimensional embedding space z such that for every neighborhoods $p \in P$ and $q \in Q$

$$
q \subseteq p \Leftrightarrow \forall_{i=1}^{d} z_{q}[i] \leq z_{p}[i]
$$

\square Whether such an embedding space exist depends on D and the class of graphs

- Even for substring relation (\preccurlyeq) with only alphabet $\{\mathrm{A}, \mathrm{B}\}$, a 2D embedding space is insufficient for

$$
q \preccurlyeq p \Leftrightarrow \forall_{i=1}^{2} z_{q}[i] \leq z_{p}[i]
$$

- AAB needs to cover the dotted box (since it includes both $A A$ and $A B$)
- On the other hand, BA cannot be brought out of the dotted box
 (otherwise it would cover AA or AB)

Order embedding space

- 2D embedding space example for graph
- \square needs to cover the dotted box (since it must cover both triangle and square) but that would cover \square
\square On the other hand, \square cannot be brought out of the dotted
 box (otherwise it would cover \triangle or \square)
- Toggling hexagon and square will allow ∇ to be placed, but now cannot be placed

- Assume that d is sufficiently large for reasonable embeddings

Training order embedding space

\square Use a node embedding space of k-hop
\square Denote the embedding of a node u as z_{u}
\square Use the loss function

$$
\operatorname{loss}(u, v)=\sum_{i=1}^{d} \max \left(0, z_{u}[i]-z_{v}[i]\right)^{2}
$$

It is clear that

- $\operatorname{loss}(u, v)=0$ when $\forall_{i=1}^{d}\left(z_{u}[i] \leq z_{v}[i]\right)$
- $\operatorname{loss}(u, v)>0$ otherwise
\square Generate random pair of graphs P, Q and train GNN such that embeddings of $u_{P} \in P$ and $u_{Q} \in Q$ has
- $\operatorname{loss}\left(u_{Q}, u_{P}\right)=0$ when $u_{Q} \subseteq u_{P}$, and
- $\operatorname{loss}\left(u_{Q}, u_{P}\right)>0$ otherwise

Mining frequent subgraphs

\square Problem. Given graph G_{T}, find r most frequently occurring subgraphs of size k in G_{T}
\square Solution. Exhaustively generate all graphs of size k and count the occurrences of each graph in G_{T}
\square Avoid combinatorial explosion by

- For each node in subgraph, attempt to superpose it to a node in G_{T} and see if there is a possible match
- Stop at the first match

Mining frequent subgraphs

\square For fast counting

- Decompose each input G_{T} into $\left|G_{T}\right|$ subgraphs, each of a k-hop neighborhood around a node $u \in G_{T}$ \square Embed each subgraph into an order embedding space
- For each graph of size k, only need to count the number of embeddings of G_{T} that completely covers its embedding
\square Can make use of the order embedding space for efficient enumeration of graphs

