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Graph and Subgraph 
Isomorphism Using GNNs

Ng Yen Kaow

An overview of the essential concepts in Stanford CS224W (Lectures 9 and 12) 
with only oversimplified examples
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Graph Isomorphism
 Complexity of graph isomorphism is unknown
 Weisfeiler-Lehman graph kernel traditionally used 

to obtain graph-level embedding

 HASH function maps input to distinct values (colors)
 After 𝐾𝐾 steps, 𝑐𝑐 𝐾𝐾 (𝑣𝑣) summarizes the structure of the 

𝐾𝐾-hop neighborhood
 To run as GNN, need to implement HASH as AGG
 Need notion of distinguishing node embeddings

WL color-refinement algorithm
1. Assign initial color 𝑐𝑐 0 𝑣𝑣 to each node 𝑣𝑣
2. Iteratively refine node colors by

𝑐𝑐 𝑘𝑘+1 𝑣𝑣 = HASH 𝑐𝑐 𝑘𝑘 𝑣𝑣 , 𝑐𝑐 𝑘𝑘 𝑢𝑢 𝑢𝑢∈𝑁𝑁 𝑣𝑣
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Distinguishing node embeddings
 Consider the task of keeping embeddings feature 

distinguishable
 Two factors affect embedding

 (Initial) feature
 Feature representation will affect whether features can be 

converted into each other
 If         ,         and          represent three distinct features, then the sum  

of          and          would become         , the third feature 

 To simplify this discussion assume that each distinct feature 
corresponds to one distinct dimension in the feature vector

 Neighborhood structure
 Nodes with the same (initial) feature and neighborhood 

structure should be assigned the same embedding, and 
vice versa

CS224W Lecture 9
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Computing node embeddings
 Recall that given a GCN of 2 layers, the embedding of A 

is computed through the computation graph as follows
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ℎB1 = AGG ℎA0 ,ℎF0,ℎE0 , {ℎB0}

Consider the case where 
nodes have distinct features Computation graph of A’s embedding 

Rearranged w.r.t. distance from A

D

ℎC1 = AGG ℎA0 ,ℎD0 ,ℎE0 , {ℎC0}

ℎD1 = AGG ℎA0 ,ℎF0,ℎC0 , {ℎD0 }

ℎA1 = AGG ℎB0 ,ℎC0,ℎD0 , {ℎA0}
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Distinguishability under sum
 Let AGG=sum, then for the GCN of 2 layers, the 

embeddings are as follows
 Let ℎA0= , ℎB0= , ℎC0= ,

ℎD0= , ℎD0= , ℎD0= , and
let AGG be sum. Then
 ℎB1 = AGG ℎA0 , ℎF0, ℎE0 , {ℎB0} =
 ℎC1 = AGG ℎA0 , ℎD0 , ℎE0 , {ℎC0} =
 ℎD1 = AGG ℎA0 , ℎF0, ℎC0 , {ℎD0 } =
 ℎA1 = AGG ℎB0 , ℎC0 , ℎD0 , {ℎA0} =

 Finally the embedding of A is
 ℎA2 = AGG ℎB1 , ℎC1 , ℎD1 , {ℎA1 } =

 Similarly, ℎB2 =
ℎC2 =
ℎD2 =
ℎ𝐸𝐸2 =
ℎ𝐹𝐹2 =

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Distinct embeddings
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Distinguishability under sum
 Let AGG=sum, then for the GCN of 2 layers, the 

embeddings are as follows

 By induction on the respective distinct feature dimension, 
the embeddings will be distinct for subsequent iterations

 If every node has distinct feature, then they have 
distinct embeddings under sum regardless of 
neighborhood structure or iterations (with the exception of 
the graph of only two nodes              ) 
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0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 1 1 1 0 0

1 1 0 0 1 1

1 0 1 1 1 0

1 0 1 1 0 1

0 1 1 0 1 0

0 1 0 1 0 1

4 2 3 3 2 2

2 4 2 2 2 2

3 2 4 3 2 1

3 2 3 4 1 2

2 2 2 1 3 1

2 2 1 2 1 3

A C

Summarized
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Distinguishability under sum
 If some nodes have the same features?

 Let ℎA0=ℎB0=          , ℎC0=ℎD0=          , ℎE0=ℎF0=          , and let AGG be 
sum. Then, as can be seen from the following example

 Two nodes with the same feature will have the 
same embedding under sum if they have the 
same neighborhood structure
 However different features and neighborhood structure 

cannot guarantee distinct embeddings

1 0 0 0 1 0 0 0 1

0 0 1

0 0 1

1 0 0

0 1 0 1 0 0

0 1 0

1 1 1

1 1 1

2 0 2

1 2 1 2 2 0

1 2 1

4 3 4

4 3 4

6 4 4

5 7 3 6 6 4

5 7 3

ℎC2 = ℎD2

ℎE2 = ℎF2

ℎA2 ≠ ℎB2



© 2021. Ng Yen Kaow

Distinguishability under sum
 If some nodes have the same features?

 Different features and neighborhood structure cannot 
guarantee distinct embeddings for various reasons
 Complementary neighborhood structure

 Hard-to-predict cases

1 0

0 1

1 0

0 1

1 1

2 1

1 2

1 1

3 2

4 4

4 4

2 3

Will A and B ever become the 
same again after the first step?
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1 0 0
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Distinguishability under sum
 If some nodes have the same features?

 Different features and neighborhood structure cannot 
guarantee distinct embeddings for various reasons
 Complementary neighborhood structure

 Hard-to-predict cases
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0 1

1 1

2 1

1 2

1 1

3 2

4 4

4 4

2 3

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

1 0 0

0 1 0
0 1 0

0 1 1

1 1 1

1 1 0

2 2 0

1 0 1

2 1 1

1 2 0
0 2 0

1 2 2

3 4 2

3 3 0

6 5 2

3 1 2

6 5 2

3 5 1
1 4 0



© 2021. Ng Yen Kaow

Distinguishability under mean
 Using mean as AGG results in even less desirable 

behavior 
 For instance, node A in both graphs below would give 

the same embedding under mean with one iteration

A
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 Using mean as AGG results in even less desirable 
behavior 
 The following example shows sum to result in more 

consistent embeddings than mean

Distinguishability under mean

1 0

0 1
0 1

1 0

1 0

.5 .5

.33 .67
.5 .5

.5 .5

.5 .5
1 1

1 2
2 2

1 1

1 1

sum mean

C and A have same 
embedding in spite of 

difference in both feature and 
neighborhood structure
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Injective function for isomorphism
 An injective function will output distinguishable 

embeddings for nodes of distinct feature and 
neighborhood structure
 sum, mean, and max are not injective

 Theorem (Xu et al. 2019). Any injective AGG function 
can be expressed as Φ ∑𝑥𝑥∈𝑆𝑆 𝑓𝑓 𝑥𝑥 for some non-
linear Φ and linear 𝑓𝑓

 Since MLP is able to approximate any function, 
we can learn Φ and 𝑓𝑓 with non-linear MLPΦ and 
linear MLP𝑓𝑓

⇒ Graph Isomorphism Network (GIN)

AGG = MLPΦ �
𝑥𝑥∈𝑆𝑆

MLP𝑓𝑓 𝑥𝑥
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Subgraph Isomorphism
 Subgraph isomorphism is NP-complete

⇒ Compare neighborhood around each node
 The 𝑘𝑘-hop neighborhood around node 𝑢𝑢 ∈ 𝑄𝑄 is

1. All the nodes within 𝑘𝑘 hops from 𝑢𝑢, and
2. All the edges in between those nodes
 Such a neighborhood is a subgraph of 𝑄𝑄

 However, not every subgraph of 𝑄𝑄 is a 
neighborhood of some node 𝑢𝑢 ∈ 𝑄𝑄
 At most 𝑘𝑘 𝑉𝑉 neighborhoods for each 𝑘𝑘

 If 𝑃𝑃 is a subgraph of 𝑄𝑄, then every neighborhood 
of 𝑃𝑃 is a subgraph of some neighborhood of 𝑄𝑄

CS224W Lecture 12.2
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 Idea: We want an 𝑑𝑑-dimensional embedding 
space 𝑧𝑧 such that for every neighborhoods 𝑝𝑝 ∈ 𝑃𝑃
and 𝑞𝑞 ∈ 𝑄𝑄

𝑞𝑞 ⊆ 𝑝𝑝 ⇔ ∀𝑖𝑖=1𝑑𝑑 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖

 With embedding space, we can test subgraph 
isomorphism through the following

Order embedding space

For each neighborhood 𝑝𝑝 ∈ 𝑃𝑃 and 𝑞𝑞 ∈ 𝑄𝑄
If ∃𝑖𝑖 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖 , return false

Return true
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 Idea: We want an 𝑑𝑑-dimensional embedding 
space 𝑧𝑧 such that for every neighborhoods 𝑝𝑝 ∈ 𝑃𝑃
and 𝑞𝑞 ∈ 𝑄𝑄

𝑞𝑞 ⊆ 𝑝𝑝 ⇔ ∀𝑖𝑖=1𝑑𝑑 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖
 Whether such an embedding space exist depends 

on 𝐷𝐷 and the class of graphs
 Even for substring relation (≼) with only alphabet {A, B}, 

a 2D embedding space is insufficient for
𝑞𝑞 ≼ 𝑝𝑝 ⇔ ∀𝑖𝑖=12 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖

Order embedding space

• AAB needs to cover the dotted box 
(since it includes both AA and AB)

• On the other hand, BA cannot be 
brought out of the dotted box 
(otherwise it would cover AA or AB)

A AB

AAB
AA

BA
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Order embedding space
 2D embedding space example for graph

 Assume that 𝑑𝑑 is sufficiently large for reasonable 
embeddings

 needs to cover the dotted box 
(since it must cover both triangle and 
square) but that would cover
 On the other hand,      cannot 

be brought out of the dotted 
box (otherwise it would cover      
or     )

 Toggling hexagon and square 
will allow      to be placed, but 
now      cannot be placed
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Training order embedding space
 Use a node embedding space of 𝑘𝑘-hop
 Denote the embedding of a node 𝑢𝑢 as 𝑧𝑧𝑢𝑢
 Use the loss function

loss 𝑢𝑢, 𝑣𝑣 = ∑𝑖𝑖=1𝑑𝑑 max 0, 𝑧𝑧𝑢𝑢 𝑖𝑖 − 𝑧𝑧𝑣𝑣 𝑖𝑖 2

It is clear that
 loss 𝑢𝑢, 𝑣𝑣 = 0 when ∀𝑖𝑖=1𝑑𝑑 𝑧𝑧𝑢𝑢 𝑖𝑖 ≤ 𝑧𝑧𝑣𝑣 𝑖𝑖
 loss 𝑢𝑢, 𝑣𝑣 > 0 otherwise

 Generate random pair of graphs 𝑃𝑃, 𝑄𝑄 and train 
GNN such that embeddings of 𝑢𝑢𝑃𝑃 ∈ 𝑃𝑃 and 𝑢𝑢𝑄𝑄 ∈ 𝑄𝑄
has
 loss 𝑢𝑢𝑄𝑄,𝑢𝑢𝑃𝑃 = 0 when 𝑢𝑢𝑄𝑄 ⊆ 𝑢𝑢𝑃𝑃, and
 loss 𝑢𝑢𝑄𝑄,𝑢𝑢𝑃𝑃 > 0 otherwise
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Mining frequent subgraphs
 Problem. Given graph 𝐺𝐺𝑇𝑇, find 𝑟𝑟 most 

frequently occurring subgraphs of size 𝑘𝑘 in 
𝐺𝐺𝑇𝑇

 Solution. Exhaustively generate all graphs 
of size 𝑘𝑘 and count the occurrences of 
each graph in 𝐺𝐺𝑇𝑇

 Avoid combinatorial explosion by
 For each node in subgraph, attempt to 

superpose it to a node in 𝐺𝐺𝑇𝑇 and see if 
there is a possible match

 Stop at the first match
CS224W Lecture 12.3



© 2021. Ng Yen Kaow

Mining frequent subgraphs
 For fast counting
 Decompose each input 𝐺𝐺𝑇𝑇 into |𝐺𝐺𝑇𝑇|

subgraphs, each of a 𝑘𝑘-hop 
neighborhood around a node 𝑢𝑢 ∈ 𝐺𝐺𝑇𝑇
 Embed each subgraph into an order 

embedding space
 For each graph of size 𝑘𝑘, only need to 

count the number of embeddings of 𝐺𝐺𝑇𝑇
that completely covers its embedding 

 Can make use of the order embedding 
space for efficient enumeration of graphs
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