
© 2021. Ng Yen Kaow

Graph and Subgraph
Isomorphism Using GNNs

Ng Yen Kaow

An overview of the essential concepts in Stanford CS224W (Lectures 9 and 12)
with only oversimplified examples

© 2021. Ng Yen Kaow

Graph Isomorphism
 Complexity of graph isomorphism is unknown
 Weisfeiler-Lehman graph kernel traditionally used

to obtain graph-level embedding

 HASH function maps input to distinct values (colors)
 After 𝐾𝐾 steps, 𝑐𝑐 𝐾𝐾 (𝑣𝑣) summarizes the structure of the

𝐾𝐾-hop neighborhood
 To run as GNN, need to implement HASH as AGG
 Need notion of distinguishing node embeddings

WL color-refinement algorithm
1. Assign initial color 𝑐𝑐 0 𝑣𝑣 to each node 𝑣𝑣
2. Iteratively refine node colors by

𝑐𝑐 𝑘𝑘+1 𝑣𝑣 = HASH 𝑐𝑐 𝑘𝑘 𝑣𝑣 , 𝑐𝑐 𝑘𝑘 𝑢𝑢 𝑢𝑢∈𝑁𝑁 𝑣𝑣

© 2021. Ng Yen Kaow

Distinguishing node embeddings
 Consider the task of keeping embeddings feature

distinguishable
 Two factors affect embedding

 (Initial) feature
 Feature representation will affect whether features can be

converted into each other
 If , and represent three distinct features, then the sum

of and would become , the third feature

 To simplify this discussion assume that each distinct feature
corresponds to one distinct dimension in the feature vector

 Neighborhood structure
 Nodes with the same (initial) feature and neighborhood

structure should be assigned the same embedding, and
vice versa

CS224W Lecture 9

1 0 0 1 1 1

1 0 0 1 1 1

© 2021. Ng Yen Kaow

Computing node embeddings
 Recall that given a GCN of 2 layers, the embedding of A

is computed through the computation graph as follows

A

F

EB

D

C A

B

C

A

F

E

A

D

E

A

F

C

ℎB1 = AGG ℎA0 ,ℎF0,ℎE0 , {ℎB0}

Consider the case where
nodes have distinct features Computation graph of A’s embedding

Rearranged w.r.t. distance from A

D

ℎC1 = AGG ℎA0 ,ℎD0 ,ℎE0 , {ℎC0}

ℎD1 = AGG ℎA0 ,ℎF0,ℎC0 , {ℎD0 }

ℎA1 = AGG ℎB0 ,ℎC0,ℎD0 , {ℎA0}

© 2021. Ng Yen Kaow

Distinguishability under sum
 Let AGG=sum, then for the GCN of 2 layers, the

embeddings are as follows
 Let ℎA0= , ℎB0= , ℎC0= ,

ℎD0= , ℎD0= , ℎD0= , and
let AGG be sum. Then
 ℎB1 = AGG ℎA0 , ℎF0, ℎE0 , {ℎB0} =
 ℎC1 = AGG ℎA0 , ℎD0 , ℎE0 , {ℎC0} =
 ℎD1 = AGG ℎA0 , ℎF0, ℎC0 , {ℎD0 } =
 ℎA1 = AGG ℎB0 , ℎC0 , ℎD0 , {ℎA0} =

 Finally the embedding of A is
 ℎA2 = AGG ℎB1 , ℎC1 , ℎD1 , {ℎA1 } =

 Similarly, ℎB2 =
ℎC2 =
ℎD2 =
ℎ𝐸𝐸2 =
ℎ𝐹𝐹2 =

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Distinct embeddings

1 1 0 0 1 1

1 0 1 1 1 0

1 0 1 1 0 1

1 1 1 1 0 0

4 2 3 3 2 2

2 4 2 2 2 2

3 2 4 3 2 1

3 2 3 4 1 2

2 2 2 1 3 1

2 2 1 2 1 3

© 2021. Ng Yen Kaow

Distinguishability under sum
 Let AGG=sum, then for the GCN of 2 layers, the

embeddings are as follows

 By induction on the respective distinct feature dimension,
the embeddings will be distinct for subsequent iterations

 If every node has distinct feature, then they have
distinct embeddings under sum regardless of
neighborhood structure or iterations (with the exception of
the graph of only two nodes)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 1 1 1 0 0

1 1 0 0 1 1

1 0 1 1 1 0

1 0 1 1 0 1

0 1 1 0 1 0

0 1 0 1 0 1

4 2 3 3 2 2

2 4 2 2 2 2

3 2 4 3 2 1

3 2 3 4 1 2

2 2 2 1 3 1

2 2 1 2 1 3

A C

Summarized

© 2021. Ng Yen Kaow

Distinguishability under sum
 If some nodes have the same features?

 Let ℎA0=ℎB0= , ℎC0=ℎD0= , ℎE0=ℎF0= , and let AGG be
sum. Then, as can be seen from the following example

 Two nodes with the same feature will have the
same embedding under sum if they have the
same neighborhood structure
 However different features and neighborhood structure

cannot guarantee distinct embeddings

1 0 0 0 1 0 0 0 1

0 0 1

0 0 1

1 0 0

0 1 0 1 0 0

0 1 0

1 1 1

1 1 1

2 0 2

1 2 1 2 2 0

1 2 1

4 3 4

4 3 4

6 4 4

5 7 3 6 6 4

5 7 3

ℎC2 = ℎD2

ℎE2 = ℎF2

ℎA2 ≠ ℎB2

© 2021. Ng Yen Kaow

Distinguishability under sum
 If some nodes have the same features?

 Different features and neighborhood structure cannot
guarantee distinct embeddings for various reasons
 Complementary neighborhood structure

 Hard-to-predict cases

1 0

0 1

1 0

0 1

1 1

2 1

1 2

1 1

3 2

4 4

4 4

2 3

Will A and B ever become the
same again after the first step?

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

1 0 0

0 1 0
0 1 0

© 2021. Ng Yen Kaow

Distinguishability under sum
 If some nodes have the same features?

 Different features and neighborhood structure cannot
guarantee distinct embeddings for various reasons
 Complementary neighborhood structure

 Hard-to-predict cases

1 0

0 1

1 0

0 1

1 1

2 1

1 2

1 1

3 2

4 4

4 4

2 3

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

1 0 0

0 1 0
0 1 0

0 1 1

1 1 1

1 1 0

2 2 0

1 0 1

2 1 1

1 2 0
0 2 0

1 2 2

3 4 2

3 3 0

6 5 2

3 1 2

6 5 2

3 5 1
1 4 0

© 2021. Ng Yen Kaow

Distinguishability under mean
 Using mean as AGG results in even less desirable

behavior
 For instance, node A in both graphs below would give

the same embedding under mean with one iteration

A

1 0 0 1

0 1

A
0 1

1 0

1 0

A

1 0 .5 .5

.5 .5

A
.5 .5

.5 .5

.5 .5

© 2021. Ng Yen Kaow

 Using mean as AGG results in even less desirable
behavior
 The following example shows sum to result in more

consistent embeddings than mean

Distinguishability under mean

1 0

0 1
0 1

1 0

1 0

.5 .5

.33 .67
.5 .5

.5 .5

.5 .5
1 1

1 2
2 2

1 1

1 1

sum mean

C and A have same
embedding in spite of

difference in both feature and
neighborhood structure

© 2021. Ng Yen Kaow

Injective function for isomorphism
 An injective function will output distinguishable

embeddings for nodes of distinct feature and
neighborhood structure
 sum, mean, and max are not injective

 Theorem (Xu et al. 2019). Any injective AGG function
can be expressed as Φ ∑𝑥𝑥∈𝑆𝑆 𝑓𝑓 𝑥𝑥 for some non-
linear Φ and linear 𝑓𝑓

 Since MLP is able to approximate any function,
we can learn Φ and 𝑓𝑓 with non-linear MLPΦ and
linear MLP𝑓𝑓

⇒ Graph Isomorphism Network (GIN)

AGG = MLPΦ �
𝑥𝑥∈𝑆𝑆

MLP𝑓𝑓 𝑥𝑥

© 2021. Ng Yen Kaow

Subgraph Isomorphism
 Subgraph isomorphism is NP-complete

⇒ Compare neighborhood around each node
 The 𝑘𝑘-hop neighborhood around node 𝑢𝑢 ∈ 𝑄𝑄 is

1. All the nodes within 𝑘𝑘 hops from 𝑢𝑢, and
2. All the edges in between those nodes
 Such a neighborhood is a subgraph of 𝑄𝑄

 However, not every subgraph of 𝑄𝑄 is a
neighborhood of some node 𝑢𝑢 ∈ 𝑄𝑄
 At most 𝑘𝑘 𝑉𝑉 neighborhoods for each 𝑘𝑘

 If 𝑃𝑃 is a subgraph of 𝑄𝑄, then every neighborhood
of 𝑃𝑃 is a subgraph of some neighborhood of 𝑄𝑄

CS224W Lecture 12.2

© 2021. Ng Yen Kaow

 Idea: We want an 𝑑𝑑-dimensional embedding
space 𝑧𝑧 such that for every neighborhoods 𝑝𝑝 ∈ 𝑃𝑃
and 𝑞𝑞 ∈ 𝑄𝑄

𝑞𝑞 ⊆ 𝑝𝑝 ⇔ ∀𝑖𝑖=1𝑑𝑑 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖

 With embedding space, we can test subgraph
isomorphism through the following

Order embedding space

For each neighborhood 𝑝𝑝 ∈ 𝑃𝑃 and 𝑞𝑞 ∈ 𝑄𝑄
If ∃𝑖𝑖 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖 , return false

Return true

© 2021. Ng Yen Kaow

 Idea: We want an 𝑑𝑑-dimensional embedding
space 𝑧𝑧 such that for every neighborhoods 𝑝𝑝 ∈ 𝑃𝑃
and 𝑞𝑞 ∈ 𝑄𝑄

𝑞𝑞 ⊆ 𝑝𝑝 ⇔ ∀𝑖𝑖=1𝑑𝑑 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖
 Whether such an embedding space exist depends

on 𝐷𝐷 and the class of graphs
 Even for substring relation (≼) with only alphabet {A, B},

a 2D embedding space is insufficient for
𝑞𝑞 ≼ 𝑝𝑝 ⇔ ∀𝑖𝑖=12 𝑧𝑧𝑞𝑞 𝑖𝑖 ≤ 𝑧𝑧𝑝𝑝 𝑖𝑖

Order embedding space

• AAB needs to cover the dotted box
(since it includes both AA and AB)

• On the other hand, BA cannot be
brought out of the dotted box
(otherwise it would cover AA or AB)

A AB

AAB
AA

BA

© 2021. Ng Yen Kaow

Order embedding space
 2D embedding space example for graph

 Assume that 𝑑𝑑 is sufficiently large for reasonable
embeddings

 needs to cover the dotted box
(since it must cover both triangle and
square) but that would cover
 On the other hand, cannot

be brought out of the dotted
box (otherwise it would cover
or)

 Toggling hexagon and square
will allow to be placed, but
now cannot be placed

© 2021. Ng Yen Kaow

Training order embedding space
 Use a node embedding space of 𝑘𝑘-hop
 Denote the embedding of a node 𝑢𝑢 as 𝑧𝑧𝑢𝑢
 Use the loss function

loss 𝑢𝑢, 𝑣𝑣 = ∑𝑖𝑖=1𝑑𝑑 max 0, 𝑧𝑧𝑢𝑢 𝑖𝑖 − 𝑧𝑧𝑣𝑣 𝑖𝑖 2

It is clear that
 loss 𝑢𝑢, 𝑣𝑣 = 0 when ∀𝑖𝑖=1𝑑𝑑 𝑧𝑧𝑢𝑢 𝑖𝑖 ≤ 𝑧𝑧𝑣𝑣 𝑖𝑖
 loss 𝑢𝑢, 𝑣𝑣 > 0 otherwise

 Generate random pair of graphs 𝑃𝑃, 𝑄𝑄 and train
GNN such that embeddings of 𝑢𝑢𝑃𝑃 ∈ 𝑃𝑃 and 𝑢𝑢𝑄𝑄 ∈ 𝑄𝑄
has
 loss 𝑢𝑢𝑄𝑄,𝑢𝑢𝑃𝑃 = 0 when 𝑢𝑢𝑄𝑄 ⊆ 𝑢𝑢𝑃𝑃, and
 loss 𝑢𝑢𝑄𝑄,𝑢𝑢𝑃𝑃 > 0 otherwise

© 2021. Ng Yen Kaow

Mining frequent subgraphs
 Problem. Given graph 𝐺𝐺𝑇𝑇, find 𝑟𝑟 most

frequently occurring subgraphs of size 𝑘𝑘 in
𝐺𝐺𝑇𝑇

 Solution. Exhaustively generate all graphs
of size 𝑘𝑘 and count the occurrences of
each graph in 𝐺𝐺𝑇𝑇

 Avoid combinatorial explosion by
 For each node in subgraph, attempt to

superpose it to a node in 𝐺𝐺𝑇𝑇 and see if
there is a possible match

 Stop at the first match
CS224W Lecture 12.3

© 2021. Ng Yen Kaow

Mining frequent subgraphs
 For fast counting
 Decompose each input 𝐺𝐺𝑇𝑇 into |𝐺𝐺𝑇𝑇|

subgraphs, each of a 𝑘𝑘-hop
neighborhood around a node 𝑢𝑢 ∈ 𝐺𝐺𝑇𝑇
 Embed each subgraph into an order

embedding space
 For each graph of size 𝑘𝑘, only need to

count the number of embeddings of 𝐺𝐺𝑇𝑇
that completely covers its embedding

 Can make use of the order embedding
space for efficient enumeration of graphs

	Graph and Subgraph Isomorphism Using GNNs
	Graph Isomorphism
	Distinguishing node embeddings
	Computing node embeddings
	Distinguishability under sum
	Distinguishability under sum
	Distinguishability under sum
	Distinguishability under sum
	Distinguishability under sum
	Distinguishability under mean
	Distinguishability under mean
	Injective function for isomorphism
	Subgraph Isomorphism
	Order embedding space
	Order embedding space
	Order embedding space
	Training order embedding space
	Mining frequent subgraphs
	Mining frequent subgraphs

