
© 2021. Ng Yen Kaow

Dimensionality Reduction
Part 4: t-SNE and UMAP
Ng Yen Kaow

© 2021. Ng Yen Kaow

Dimensionality Reduction
 Linear methods
 PCA (Principal Component Analysis)

 cMDS (Classical Multidimensional Scaling)

 Non-linear methods
 KPCA (Kernel PCA)

 mMDS (Metric MDS)

 Isomap
 LLE (Locally Linear Embedding)

 Laplacian Eigenmap
 t-SNE (t-distributed Stochastic Neighbor Embedding)

 UMAP (Uniform Manifold Approximation and Projection)

© 2021. Ng Yen Kaow

t-SNE in a nutshell
 Transform n-D space points into 2D
 Convert the distances in n-D space between pairwise

points i, j into their similarity probability 𝑝𝑝𝑖𝑖𝑖𝑖, assuming
 Gaussian probability fall-off by the distance of the pair

 Each point is at the mean of its own Gaussian with its own
variance (determined through “perplexity”)

 Result is matrix (P)ij

 Reconstruct distances in 2D space (graph layout) such
that they give rise to a similarity probability matrix (Q)ij with
 t-distribution probability fall-off by the distance of each

pair in the reconstructed points
 The t-distributions all have the same variance (making

clusters evenly sized in the 2D space for better visualization)
 Minimal KL-divergence from (P)ij

© 2021. Ng Yen Kaow

t-SNE in a nutshell

Points in n-D
space (P)ij

Step 1: Compute
pij from pairwise
distances

(Q)ij

Points in 2D
space (initialized

to random
values)

Step 2b: Compute
KL-divergence

Step 2: Adjust points in 2D
space until cross entropy is
minimal

Step 2a: Compute
qij from pairwise
distances

Step 2c: Modify points in 2D by gradient descent

Similarity probabilities

Similarity probabilities

© 2021. Ng Yen Kaow

 How to compute probability 𝑝𝑝𝑖𝑖𝑖𝑖
 𝑝𝑝𝑖𝑖𝑖𝑖 = ⁄𝑝𝑝𝑖𝑖|𝑖𝑖 + 𝑝𝑝𝑖𝑖|𝑖𝑖 2𝑁𝑁, 𝑝𝑝𝑖𝑖𝑖𝑖 = 0

𝑝𝑝𝑖𝑖|𝑖𝑖 =
exp �− 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2 2𝜎𝜎𝑖𝑖2

∑𝑘𝑘≠𝑖𝑖 exp ⁄− 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑘𝑘 2 2𝜎𝜎𝑖𝑖2

where the variance σi is found (through binary search)
to fulfill

−�
𝑖𝑖
𝑝𝑝𝑖𝑖|𝑖𝑖 log2 𝑝𝑝𝑖𝑖|𝑖𝑖 = log2(Perplexity)

for a user-defined hyperparameter Perplexity

 Gaussian used because the fast drop-off gives
more weight to nearer points

t-SNE details
Gaussian

Normalization

© 2021. Ng Yen Kaow

 How to compute probability 𝑞𝑞𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖𝑖𝑖 =
1 + 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖

2 −1

∑𝑘𝑘 ∑𝑙𝑙≠𝑘𝑘 1 + 𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑙𝑙 2 −1

 t-distribution used because of the slower drop-off
(or fatter tails)

 For the gradient descent watch this video
https://www.youtube.com/watch?v=W-9L6v_rFIE&t=244s

 Code example
https://github.com/karpathy/tsnejs

BTW, the most viewed t-SNE video on YouTube turns out to be very bad!

t-SNE details
t-distribution

https://www.youtube.com/watch?v=W-9L6v_rFIE&t=244s
https://github.com/karpathy/tsnejs

© 2021. Ng Yen Kaow

t-SNE lesson learned
 Like in Laplacian Eigenmap,

exp �− 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
2 2𝜎𝜎𝑖𝑖2 is used for edge weight

 However, t-SNE sets the edge weight for
pairwise points, and count on natural
elimination of edges between distant points

 Distance is adjusted for local data density
through Perplexity
 However the justification for Perplexity is

weak
 This is solved in UMAP

© 2021. Ng Yen Kaow

UMAP idea
 t-SNE converts the distance between two points into a

probability in an ad hoc manner and attempts to
preserve this probability

 UMAP starts with a totally different idea: To construct a
manifold from only a sampling of the points on it

a 1D manifold (a sin curve in this case)

points on
the

manifold

© 2021. Ng Yen Kaow

UMAP idea
 We can connect

points that are of a
fixed distance apart
to build the objects
that will allow us to
recover the
manifold

 But that will result
in a lot of missing
regions in the
manifold

© 2021. Ng Yen Kaow

UMAP idea
 This can be solved

if the distances are
not treated as
equal on the
manifold

 The resultant
objects will be able
to cover the
manifold

Give more weight
to sparse region

© 2021. Ng Yen Kaow

UMAP idea
 Like in t-SNE, UMAP describes the relationship

between points with a value 𝑝𝑝𝑖𝑖𝑖𝑖
 Like in t-SNE, the values of 𝑝𝑝𝑖𝑖𝑖𝑖 fall off according

to some Gaussian-shaped function
 Their fall-offs are both less steep in sparse region

 Like in t-SNE, the variance of the Gaussian-
shape is different for different point 𝑖𝑖
 Unlike t-SNE’s Perplexity, the definition of UMAP’s

variance can be better justified from theory (that is, to
enable local connectivity)

 Unlike in t-SNE, we do not need to consider
these 𝑝𝑝𝑖𝑖𝑖𝑖 values as probabilities
 There is no longer any need for normalization

© 2021. Ng Yen Kaow

UMAP in a nutshell
 Convert the distances in n-D space between pairwise

points i, j into an edge weight 𝑝𝑝𝑖𝑖𝑖𝑖, assuming
 Gaussian edge weight fall-off by distance

 A Gaussian is assumed for each point, with variance
determined through a nearest-neighbor technique

 Result is matrix (P)ij

 Reconstruct distances in 2D space (graph layout) such
that they give rise to a matrix (Q)ij with
 An adjustable, t-distribution-like, edge weight fall-

off by the reconstructed distance
 The distributions have same variance (making clusters

evenly sized in the 2D space for better visualization)
 Minimal cross entropy from (P)ij

© 2021. Ng Yen Kaow

UMAP in a nutshell

Points in n-D
space

Step 1: Compute
pij from pairwise
distances

Points in 2D
space (initialized
through Graph

Laplacian)

Step 2b: Compute
Cross entropy

Step 2: Adjust points in 2D
space until cross entropy is
minimal

Step 2a: Compute
qij from pairwise
distances

Step 2c: Modify points in 2D by stochastic gradient descent

(P)ij

(Q)ij

Edge weights

Edge weights

© 2021. Ng Yen Kaow

 How to compute edge weight 𝑝𝑝𝑖𝑖𝑖𝑖
 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖|𝑖𝑖 + 𝑝𝑝𝑖𝑖|𝑖𝑖 − 𝑝𝑝𝑖𝑖|𝑖𝑖 � 𝑝𝑝𝑖𝑖|𝑖𝑖 (union of edge weights)

𝑝𝑝𝑖𝑖|𝑖𝑖 = exp −
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

2 − 𝜌𝜌𝑖𝑖
𝜎𝜎𝑖𝑖

where
 𝜌𝜌𝑖𝑖 is the distance from 𝑥𝑥𝑖𝑖 to its nearest neighbor
 σi is adjusted such that

∑𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖 = log2 𝑘𝑘
where 𝒌𝒌 is a user-defined hyperparameter
(𝑘𝑘 is roughly the number of neighbors to consider
as connected)

 Each point has a weight function defined by 𝜌𝜌𝑖𝑖 and σi

UMAP details

Gaussian
without

normalization

Follows from
theory of
manifold
support

© 2021. Ng Yen Kaow

 How to compute probability 𝑞𝑞𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖 =

1

1 + 𝑎𝑎 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖
2𝑏𝑏

which has a shape similar to t-distribution but
adjustable by hyperparameters 𝑎𝑎 and 𝑏𝑏
 UMAP can auto-adjust 𝑎𝑎 and 𝑏𝑏

UMAP details

© 2021. Ng Yen Kaow

UMAP lesson learned
 Compared to t-SNE, UMAP’s (P)ij has better

theoretical basis and can be computed faster
 Many of the advantages of UMAP may not be due to

its theoretical foundation but rather, the final form of
its formulation, such as the choice of cross entropy
as cost function, which were impossible in t-SNE
due to its probabilistic interpretation
See https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

 In fact, a recent work confirms that “UMAP does
not preserve global structure any better than t-
SNE when using the same initialization”, Kobak
and Linderman, 2019

https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

	Dimensionality Reduction Part 4: t-SNE and UMAP
	Dimensionality Reduction
	t-SNE in a nutshell
	t-SNE in a nutshell
	t-SNE details
	t-SNE details
	t-SNE lesson learned
	UMAP idea
	UMAP idea
	UMAP idea
	UMAP idea
	UMAP in a nutshell
	UMAP in a nutshell
	UMAP details
	UMAP details
	UMAP lesson learned

