Dimensionality Reduction Part 3: The Local Manifold

Dimensionality Reduction

- Linear methods
 - PCA (Principal Component Analysis)
 - CMDS (Classical Multidimensional Scaling)
- Non-linear methods
 - KPCA (Kernel PCA)
 - mMDS (Metric MDS)
 - Isomap
 - LLE (Locally Linear Embedding)
 - Laplacian Eigenmap
 - t-SNE (t-distributed Stochastic Neighbor Embedding)
 - UMAP (Uniform Manifold Approximation and Projection)

Keys principles for PCA/MDS

	Property in matrix	Linearity of mapped space	Principle	Dimensionality reduction
PCA	Pairwise (global) covariance	Linearly mapped space (or no mapping)	Maximizes covariance in mapped space	Principal eigenvectors
cMDS	Pairwise (global) inner product	Linearly mapped space (or no mapping)	Recovers original structure	Principal eigenvectors
mMDS	Pairwise (global) metric distance	Non-linearly mapped space	Find approximation in low dimension	
Kernel PCA	Pairwise (global) covariance	Non-linearly mapped space	Maximizes covariance in mapped space	Principal eigenvectors

PCA readily allows embedding of **out-of-sample examples**

Drawback with global properties Global properties on some manifolds cannot characterize the manifold well

Techniques based on preserving global properties does poorly on the Swiss roll

Drawback with global properties

Original Data

kernel PCA (rbf kernel)

On the other hand, methods such as **LLE** that preserve local properties can handle the Swiss roll

Trends	in Dimensionality	Re	eduction
1901	PCA	Globa Loca	al property preserving Il manifold preserving
1958	MDS	ocal mai	nifold using Gaussian
1963	SVM		Linear
1964	Kernel Perceptron		
1969	Sammon's Mapping		
1992	Kernel SVM		Non-linear
1997	Metric MDS		
1998	Kernel PCA		
2000	Isomap, LLE		Non-global
2001	Laplacian Eigenman		
2008	t-SNE		
2018 © 2021. Ng Yen Kaow	UMAP		

Local structure preserving mapping

Weinberger and Saul. "Unsupervised Learning of Image Manifolds by Semi-definite Programming", CVPR 2004 © 2021. Ng Yen Kaow

Isomap idea

- Isomap performs only the first step to find (Euclidean) distances of neighboring points
- Pairwise (geodesic) distances are estimated using the neighboring distances

□ Then, MDS is used on the estimated geodesic distances

Isomap algorithm

- 1. Construct neighborhood graph
 - Find nearest k neighbors $N(x_i)$ of each point x_i
 - Construct a neighborhood graph by connecting x_i to the points in N(x_i) with Euclidean
 distance set as edge weight
- 2. Compute (shortest) distance matrix M
 - Find shortest distance between pairwise points on the graph
- 3. Find eigenvectors of *M* using MDS (or PCA)

Isomap

- At first look, appear to be very different from kernel PCA (or PCA)
- However, from a kernel perspective,
 Isomap is similarly a kernel method
 - Discussed in Ham *et al.* "A kernel view of the dimensionality reduction of manifolds", 2003
 - Such a framework allows mapping out-ofsample examples to the embedded space
 - Discussed in Bengio *et al.* "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

Locally Linear Embedding (LLE)

□ LLE is the first algorithm that runs the full scheme

Locally Linear Embedding (LLE)

- 1. Construct neighborhood graph
 - Find nearest k neighbors $N(x_i)$ of each point x_i
- 2 Find matrix *W* which minimizes its sum of squares error in representing each x_i with its neighbors x_i as a linear combination of its neighbors
 - If suffices that for each *i* error(w_i) = $||x_i - \sum_{j \neq i} w_{ij} x_j||^2$ is minimized
- 3. Find low dimensional y_1, \ldots, y_n that is most consistent with W
 - Minimize

error
$$(y_1, ..., y_n) = \sum_{i=1}^n \|y_i - \sum_{j \neq i} w_{ij} y_j\|^2$$

□ For each *i*, find $w_{i1}, ..., w_{ik}$ such that $\|x_i - \sum_{j \neq i} w_{ij} x_j\|^2$ is minimized

• Further require that $\sum_{j} w_{ij} = 1$

- 1. Then, solution will be invariant to translation Let $x'_j \rightarrow x_j + c$. Then, $x'_j - \sum_{j \neq i} w_{ij} x'_j = x_j + c - \sum_{j \neq i} w_{ij} (x_j + c)$ $= x_j + c - \sum_{j \neq i} w_{ij} x_j - c$ $= x_j - \sum_{j \neq i} w_{ij} x_j$
- 2. Also, w_{ij} can be interpreted as transition probability

- □ For each *i*, find $w_{i1}, ..., w_{ik}$ such that $\|x_i \sum_{j \neq i} w_{ij} x_j\|^2$ is minimized
 - 1. Let $x'_i = x_i x_i$ (Center x_i) Then, $||x_i' - \sum_{i \neq i} w_{ii} x_i'||^2 = ||\sum_{i \neq i} w_{ii} x_i'||^2$ 2. Let $C_i = [x'_1, ..., x'_k]$ Then, $\|\sum_{i \neq i} w_{ii} x'_i\|^2 = w_i^{\top} C_i C_i^{\top} w_i$ Or, $\|\sum_{i \neq i} w_{ii} x'_i\|^2 = w_i^{\top} G_i w_i$ for $G_i = C_i C_i^{\top}$ \Rightarrow Minimize $w_i^{\top}G_iw_i$ subject to $\sum_i w_{ii} = 1$ Cannot be done by eigendecomposition of G_i since constraint $\sum_{i} w_{ii} = 1$ cannot be fulfilled Return to the Lagrange multiplier method

□ Minimize $w_i^T G_i w_i$ subject to $\sum_j w_{ij} = 1$

1. Use Lagrange multiplier to constrain $\sum_{j} w_{ij} = 1$ That is, $\mathbf{1}^{\mathsf{T}} w_i - 1 = 0$, Lagrangian, $\mathcal{L}(w_i, \lambda) = w_i^{\mathsf{T}} G w_i - \lambda (\mathbf{1}^{\mathsf{T}} w_i - 1)$ $\frac{\partial \mathcal{L}}{\partial w_i} = 2G_i w_i - \lambda \mathbf{1} = 0 \Rightarrow G_i w_i = \frac{\lambda}{2} \mathbf{1}$ $\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{1}^{\mathsf{T}} w_i - 1 = 0$

2. If *G* is invertible

$$G_i w_i = \frac{\lambda}{2} \mathbf{1} \Rightarrow w_i = \frac{\lambda}{2} G_i^{-1} \mathbf{1}$$

Find $G_i^{-1}\mathbf{1}$ or solve linear equations $G_i w_i = \frac{\lambda}{2}\mathbf{1}$ Then, scale λ such that $\sum_i w_{ij} = 1$

3. If *G* is not invertible ($k \ge m$, rank deficient), use Tikhonov regularization Minimize $w_i^{\top}G_iw_i + \alpha w_i^{\top}w_i$ instead, subject to $||w_i|| = 1$, where α determines the degree of regularization

$$\mathcal{L}(w_i, \lambda) = w_i^{\mathsf{T}} G w_i + \alpha w_i^{\mathsf{T}} w_i - \lambda (\mathbf{1}^{\mathsf{T}} w_i - 1)$$

$$\frac{\partial \mathcal{L}}{\partial w_i} = 2G_i w_i + 2\alpha w_i - \lambda \mathbf{1} = 0$$

$$(G_i + \alpha I) w_i = \frac{\lambda}{2} \mathbf{1}$$

$$w_i = \frac{\lambda}{2} (G_i + \alpha I)^{-1} \mathbf{1}$$

Find $w_i = (G_i + \alpha I)^{-1} \mathbf{1}$ or solve linear equations $(G_i + \alpha I)w_i = \mathbf{1}$. Scale λ such that $\sum_j w_{ij} = 1$

LLE Step 3: Find low-D y_1, \dots, y_n

- □ Find $y_1, ..., y_n \in \mathbb{R}^q$ such that $\|y_i - \sum_{j \neq i} w_{ij} y_j\|^2$ is minimized
 - To restrict equivalent solutions due to translation, require that $\sum_i y_i = 0$ (centered)
 - Let Y be the matrix formed by y_i as the rows, and u_i be the columns of Y. To ensure that u_i are orthogonal, require that $Y^TY = nI$

i.e.
$$Y^{\mathrm{T}}Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} u_1 & \dots & u_n \\ u_n \end{bmatrix} = \begin{bmatrix} u_1 u_1 & \dots & u_1 u_n \\ \vdots & \ddots & \vdots \\ u_n u_1 & \dots & u_n u_n \end{bmatrix}$$
$$\begin{bmatrix} u_1 u_1 & \dots & u_1 u_n \\ \vdots & \ddots & \vdots \\ u_n u_1 & \dots & u_n u_n \end{bmatrix} = nI \Rightarrow u_i u_j = 0 \text{ for } i \neq j$$

LLE Step 3: Find low-D y_1, \dots, y_n

□ Find $y_1, ..., y_n \in \mathbb{R}^q$ such that $\|y_i - \sum_{j \neq i} w_{ij} y_j\|^2$ is minimized subject to $Y^\top Y = nI$ and $\sum_i y_i = 0$

$$\begin{split} & \sum_{i=1}^{n} \left(y_{i} - \sum_{j} w_{ij} y_{j} \right)^{2} \\ &= \sum_{i}^{n} y_{i}^{2} - y_{i} \left(\sum_{j} w_{ij} y_{j} \right) - \left(\sum_{j} w_{ij} y_{j} \right) y_{i} + \left(\sum_{j} w_{ij} y_{j} \right)^{2} \\ &= Y^{\top} Y - Y^{\top} (WY) - (WY)^{\top} Y + (WY)^{\top} (WY) \\ &= \left((I - W)Y \right)^{\top} ((I - W)Y) \\ &= Y^{\top} (I - W)^{\top} (I - W)Y \\ &= Y^{\top} MY \text{ where } M = (I - W)^{\top} (I - W) \end{split}$$

LLE Step 3: Find low-D y_1, \dots, y_n

□ Minimize $Y^{\top}MY$ where $M = (I - W)^{\top}(I - W)$ subject to $Y^{\top}Y = nI$ and $\sum_{i} y_{i} = 0$

Consider first case q = 1 (that is, Y is column vector and I = 1)

 $\mathcal{L}(Y,\mu) = Y^{\mathsf{T}}MY - \mu\left(\frac{Y^{\mathsf{T}}Y}{n} - 1\right) - \nu Y$ $\frac{\partial \mathcal{L}}{\partial Y} = 2MY - 2\frac{\mu}{n}Y - \nu = 0 \Rightarrow MY = \frac{\mu}{n}Y \quad (\text{Set } \nu = 0)$

Hence Y is a eigenvector of M

For $q \ge 2$, simply observe that by the min-max theorem the eigenvectors for *M* minimizes $Y^{\top}MY$

Finally, since $W\mathbf{1} = \mathbf{1}$, $(I - W)\mathbf{1} = 0$ $\Rightarrow (I - W)^{\top}(I - W)\mathbf{1} = 0 \Rightarrow M\mathbf{1} = 0$ $\Rightarrow Y = \mathbf{1}$ is a eigenvector of zero eigenvalue (excluded)

LLE algorithm

- 1. Construct neighborhood graph Find nearest k neighbors $N(x_i)$ of each point x_i
- 2. Find matrix *W* which minimizes its sum of squares error in representing each x_i with its neighbors For each *i*

Let $x'_j \rightarrow x_j - x_i$ and Let $C_i = [x'_1, ..., x'_k]$ Solve $G_i w_i = \mathbf{1}$ where $G_i = C_i C_i^T$ Scale w_i such that $w_i \mathbf{1} = 1$ Collect w_i into W

3. Find low dimensional $y_1, ..., y_n$ that is most consistent with WFind eigenvectors for $M = (I - W)^{\top}(I - W)$ with smallest eigenvalues

LLE out-of-sample examples

- Mapping of out-of-sample examples not immediately available like in Kernel PCA
 - Discussed in Bengio *et al.* "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

Laplacian Eigenmap idea

- The normalized Laplacian L encodes structure of the graph
 - The eigenvectors of L known to encode important features of the graph (see slides on Spectral Clustering)
- The Laplacian can be considered as eigenfunctions similar to kernel functions
 - Discussed in Bengio *et al.* "Learning eigenfunctions links Spectral Embedding and Kernel PCA", 2004
 - Readily gives rise to using Laplacian in similar way as Kernel PCA

Laplacian Eigenmap algorithm

- 1. Construct neighborhood graph
 - Find nearest k neighbors $N(x_i)$ of each point x_i
 - Construct a neighborhood graph by connecting x_i to the points in N(x_i) with Gaussian heat function e^{-d²/t} set as edge weight (for some hyperparameter t)
- 2. Construct normalized Laplacian *L* and degree matrix *D*
- 3. Find the eigenvectors for the generalized eigenvalue system $Lu = \lambda Du$

Laplacian Eigenmap discussions

- Like in LLE, Laplacian Eigenmap models edge weight as transition probability
 - However, since edge weight $e^{-d^2/t}$ in Laplacian Eigenmap naturally falls off with distance \Rightarrow no need to find k neighbors
 - □ t-SNE computes $e^{-d^2/2\sigma^2}$ for pairwise points with σ discovered from data
- Mapping of out-of-sample examples not immediately available like in Kernel PCA
 - Discussed in Bengio *et al.* "Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering", 2003

Comparison

	Isomap	LLE	Laplacian Eigenmap
Edge weight	Approximated geodesic distance	Coefficients w_{ij} in reconstructing x_i (transition probability)	Gaussian $e^{-d^2/\sigma}$ (transition probability)
Pairwise edge or neighborhood only	Pairwise Distant pairs use shortest path distance	Neighborhood only Matrix contains mostly zeros	Neighborhood only Matrix contains mostly zeros
Matrix to decompose	Edge weight	Edge weight	Normalized Laplacian
Embedding into lower dimensional space	Use principal eigenvectors from MDS	Find low dimensional points that give the same w_{ij} (shown to be principal eigenvectors)	Use principal eigenvectors that retain graph structure
Edge weight preservation	Preserves Euclidean distance	Normalized, scale-free	Preserves $e^{-d^2/t}$