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Dimensionality Reduction
 Linear methods
 PCA (Principal Component Analysis)

 cMDS (Classical Multidimensional Scaling)

 Non-linear methods
 KPCA (Kernel PCA)

 mMDS (Metric MDS)

 Isomap
 LLE (Locally Linear Embedding)

 Laplacian Eigenmap
 t-SNE (t-distributed Stochastic Neighbor Embedding)

 UMAP (Uniform Manifold Approximation and Projection)
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Keys principles for PCA/MDS

 PCA readily allows embedding of out-of-sample examples

Property in 
matrix

Linearity of 
mapped space

Principle Dimensionality 
reduction

PCA Pairwise (global) 
covariance

Linearly mapped 
space (or no
mapping)

Maximizes 
covariance in 
mapped space

Principal 
eigenvectors

cMDS Pairwise (global) 
inner product

Linearly mapped 
space (or no
mapping)

Recovers 
original 
structure

Principal
eigenvectors

mMDS Pairwise (global) 
metric distance

Non-linearly 
mapped space

Find approximation in low 
dimension

Kernel 
PCA

Pairwise (global) 
covariance

Non-linearly 
mapped space

Maximizes 
covariance in 
mapped space

Principal
eigenvectors
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Drawback with global properties
 Global properties on some manifolds 

cannot characterize the manifold well

 Techniques based on preserving global 
properties does poorly on the Swiss roll

“The Swiss Roll”

Global distance

Distance along manifold
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Drawback with global properties

Data projected to main 
three eigenvectors in 

kernel PCA (rbf kernel)

Original Data

On the other hand, 
methods such as LLE

that preserve local 
properties can handle the 

Swiss roll 
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Trends in Dimensionality Reduction
1901 PCA
1958 MDS
1963 SVM
1964 Kernel Perceptron
1969 Sammon’s Mapping
1992 Kernel SVM
1997 Metric MDS
1998 Kernel PCA
2000 Isomap, LLE
2001 Laplacian Eigenmap
2008 t-SNE
2018 UMAP

Global property preserving
Local manifold preserving

Local manifold using Gaussian

Linear

Non-linear

Non-global
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Local structure preserving mapping
The 

Swiss roll
Connect only 

neighboring points 
in the manifold

Embed datapoints in low 
dimensional space, 
preserving the local 

relationship

Weinberger and Saul. “Unsupervised Learning of Image Manifolds by Semi-definite Programming”, CVPR 2004
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Isomap idea

 Isomap performs only the first step to find (Euclidean) 
distances of neighboring points

 Pairwise (geodesic) distances are estimated using the 
neighboring distances

 Then, MDS is used on the estimated geodesic distances

The 
Swiss roll

Connect only 
neighboring points 

in the manifold
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Isomap algorithm
1. Construct neighborhood graph
 Find nearest 𝑘𝑘 neighbors 𝑁𝑁 𝑥𝑥𝑖𝑖 of each point 𝑥𝑥𝑖𝑖
 Construct a neighborhood graph by connecting 

𝑥𝑥𝑖𝑖 to the points in 𝑁𝑁(𝑥𝑥𝑖𝑖) with Euclidean 
distance set as edge weight

2. Compute (shortest) distance matrix 𝑀𝑀
 Find shortest distance between pairwise points 

on the graph
3. Find eigenvectors of 𝑀𝑀 using MDS (or PCA)
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Isomap
 At first look, appear to be very different 

from kernel PCA (or PCA)
 However, from a kernel perspective, 

Isomap is similarly a kernel method
 Discussed in Ham et al. “A kernel view of the 

dimensionality reduction of manifolds”, 2003
 Such a framework allows mapping out-of-

sample examples to the embedded space
 Discussed in Bengio et al. “Out-of-Sample 

extensions for LLE, Isomap, MDS, Eigenmaps, 
and Spectral Clustering”, 2003
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Locally Linear Embedding (LLE)

 LLE is the first algorithm that runs the full scheme 

The 
Swiss roll

Connect only 
neighboring 

points

Embed datapoints in low 
dimensional space
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Locally Linear Embedding (LLE)
1. Construct neighborhood graph
 Find nearest 𝑘𝑘 neighbors 𝑁𝑁 𝑥𝑥𝑖𝑖 of each point 𝑥𝑥𝑖𝑖

2. Find matrix 𝑊𝑊 which minimizes its sum of 
squares error in representing each 𝑥𝑥𝑖𝑖 with 
its neighbors
 If suffices that for each 𝑖𝑖

error 𝑤𝑤𝑖𝑖 = 𝑥𝑥𝑖𝑖 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗
2

is minimized

3. Find low dimensional 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 that is most 
consistent with 𝑊𝑊
 Minimize

error 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗
2

𝑥𝑥𝑖𝑖 as a linear combination 
of its neighbors
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LLE Step 2: Find matrix 𝑊𝑊
 For each 𝑖𝑖, find 𝑤𝑤𝑖𝑖1, … ,𝑤𝑤𝑖𝑖𝑖𝑖 such that

𝑥𝑥𝑖𝑖 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗
2 is minimized

 Further require that ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1
1. Then, solution will be invariant to 

translation
Let 𝑥𝑥𝑗𝑗′ → 𝑥𝑥𝑗𝑗 + 𝑐𝑐. Then,
𝑥𝑥𝑗𝑗′ − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗′ = 𝑥𝑥𝑗𝑗 + 𝑐𝑐 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗 𝑥𝑥𝑗𝑗 + 𝑐𝑐

= 𝑥𝑥𝑗𝑗 + 𝑐𝑐 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗 − 𝑐𝑐
= 𝑥𝑥𝑗𝑗 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗

2. Also, 𝑤𝑤𝑖𝑖𝑗𝑗 can be interpreted as transition 
probability
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LLE Step 2: Find matrix 𝑊𝑊
 For each 𝑖𝑖, find 𝑤𝑤𝑖𝑖1, … ,𝑤𝑤𝑖𝑖𝑖𝑖 such that

𝑥𝑥𝑖𝑖 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗
2 is minimized

1. Let 𝑥𝑥𝑗𝑗′ = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 (Center 𝑥𝑥𝑗𝑗)
Then, 𝑥𝑥𝑖𝑖′ − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗′

2 = ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗′
2

2. Let 𝐶𝐶𝑖𝑖 = 𝑥𝑥1′ , … , 𝑥𝑥𝑖𝑖′
Then, ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗′

2 = 𝑤𝑤𝑖𝑖⊤𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖⊤𝑤𝑤𝑖𝑖
Or, ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗′

2 = 𝑤𝑤𝑖𝑖⊤𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 for 𝐺𝐺𝑖𝑖 = 𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖⊤

⇒ Minimize 𝑤𝑤𝑖𝑖⊤𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 subject to ∑𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗 = 1
Cannot be done by eigendecomposition of 𝐺𝐺𝑖𝑖
since constraint ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1 cannot be fulfilled
Return to the Lagrange multiplier method
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LLE Step 2: Find matrix 𝑊𝑊
 Minimize 𝑤𝑤𝑖𝑖⊤𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 subject to ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1

1. Use Lagrange multiplier to constrain ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1
That is, 𝟏𝟏⊤𝑤𝑤𝑖𝑖 − 1 = 0,
Lagrangian, ℒ 𝑤𝑤𝑖𝑖 , 𝜆𝜆 = 𝑤𝑤𝑖𝑖⊤𝐺𝐺𝑤𝑤𝑖𝑖 − 𝜆𝜆 𝟏𝟏⊤𝑤𝑤𝑖𝑖 − 1
𝜕𝜕ℒ
𝜕𝜕𝑤𝑤𝑖𝑖

= 2𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 − 𝜆𝜆𝟏𝟏 = 0 ⇒ 𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 = 𝜆𝜆
2
𝟏𝟏

𝜕𝜕ℒ
𝜕𝜕𝜆𝜆

= 𝟏𝟏⊤𝑤𝑤𝑖𝑖 − 1 = 0

2. If 𝐺𝐺 is invertible
𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 = 𝜆𝜆

2
𝟏𝟏 ⇒ 𝑤𝑤𝑖𝑖 = 𝜆𝜆

2
𝐺𝐺𝑖𝑖−1𝟏𝟏

Find 𝐺𝐺𝑖𝑖−1𝟏𝟏 or solve linear equations 𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 = 𝜆𝜆
2
𝟏𝟏

Then, scale 𝜆𝜆 such that ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1
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LLE Step 2: Find matrix 𝑊𝑊
3. If 𝐺𝐺 is not invertible (𝑘𝑘 ≥ 𝑚𝑚, rank deficient), use 

Tikhonov regularization
Minimize 𝑤𝑤𝑖𝑖⊤𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 + 𝛼𝛼𝑤𝑤𝑖𝑖⊤𝑤𝑤𝑖𝑖 instead, subject to 
𝑤𝑤𝑖𝑖 = 1, where 𝛼𝛼 determines the degree of 

regularization
ℒ 𝑤𝑤𝑖𝑖 , 𝜆𝜆 = 𝑤𝑤𝑖𝑖⊤𝐺𝐺𝑤𝑤𝑖𝑖 + 𝛼𝛼𝑤𝑤𝑖𝑖⊤𝑤𝑤𝑖𝑖 − 𝜆𝜆 𝟏𝟏⊤𝑤𝑤𝑖𝑖 − 1
𝜕𝜕ℒ
𝜕𝜕𝑤𝑤𝑖𝑖

= 2𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 + 2𝛼𝛼𝑤𝑤𝑖𝑖 − 𝜆𝜆𝟏𝟏 = 0

𝐺𝐺𝑖𝑖 + 𝛼𝛼𝐼𝐼 𝑤𝑤𝑖𝑖 = 𝜆𝜆
2
𝟏𝟏

𝑤𝑤𝑖𝑖 = 𝜆𝜆
2
𝐺𝐺𝑖𝑖 + 𝛼𝛼𝐼𝐼 −1𝟏𝟏

Find 𝑤𝑤𝑖𝑖 = 𝐺𝐺𝑖𝑖 + 𝛼𝛼𝐼𝐼 −1𝟏𝟏 or solve linear equations
𝐺𝐺𝑖𝑖 + 𝛼𝛼𝐼𝐼 𝑤𝑤𝑖𝑖 = 𝟏𝟏. Scale 𝜆𝜆 such that ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1
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LLE Step 3: Find low-D 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛
 Find 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞 such that

𝑦𝑦𝑖𝑖 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗
2 is minimized

 To restrict equivalent solutions due to 
translation, require that ∑𝑖𝑖 𝑦𝑦𝑖𝑖 = 0 (centered)

 Let 𝑌𝑌 be the matrix formed by 𝑦𝑦𝑖𝑖 as the rows, 
and 𝑢𝑢𝑖𝑖 be the columns of 𝑌𝑌. To ensure that 𝑢𝑢𝑖𝑖
are orthogonal, require that 𝑌𝑌⊤𝑌𝑌 = 𝑛𝑛𝐼𝐼

i.e. 𝑌𝑌T𝑌𝑌 =
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛

⊤ 𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛

=
𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛

𝑢𝑢1 … 𝑢𝑢𝑛𝑛 =
𝑢𝑢1𝑢𝑢1 … 𝑢𝑢1𝑢𝑢𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛𝑢𝑢1 … 𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛
𝑢𝑢1𝑢𝑢1 … 𝑢𝑢1𝑢𝑢𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛𝑢𝑢1 … 𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛
= 𝑛𝑛𝐼𝐼 ⇒ 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 0 for 𝑖𝑖 ≠ 𝑗𝑗
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LLE Step 3: Find low-D 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛
 Find 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 ∈ ℝ𝑞𝑞 such that

𝑦𝑦𝑖𝑖 − ∑𝑗𝑗≠𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗
2 is minimized subject to 

𝑌𝑌⊤𝑌𝑌 = 𝑛𝑛𝐼𝐼 and ∑𝑖𝑖 𝑦𝑦𝑖𝑖 = 0

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗
2

= ∑𝑖𝑖𝑛𝑛 𝑦𝑦𝑖𝑖2 − 𝑦𝑦𝑖𝑖 ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗 − ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗 𝑦𝑦𝑖𝑖 + ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗
2

= 𝑌𝑌⊤𝑌𝑌 − 𝑌𝑌⊤ 𝑊𝑊𝑌𝑌 − 𝑊𝑊𝑌𝑌 ⊤𝑌𝑌 + 𝑊𝑊𝑌𝑌 ⊤(𝑊𝑊𝑌𝑌)
= 𝐼𝐼 −𝑊𝑊 𝑌𝑌 ⊤ 𝐼𝐼 −𝑊𝑊 𝑌𝑌
= 𝑌𝑌⊤ 𝐼𝐼 −𝑊𝑊 ⊤ 𝐼𝐼 −𝑊𝑊 𝑌𝑌

= 𝑌𝑌⊤𝑀𝑀𝑌𝑌 where𝑀𝑀 = 𝐼𝐼 −𝑊𝑊 ⊤(𝐼𝐼 −𝑊𝑊)
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LLE Step 3: Find low-D 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛
 Minimize 𝑌𝑌⊤𝑀𝑀𝑌𝑌 where 𝑀𝑀 = 𝐼𝐼 −𝑊𝑊 ⊤(𝐼𝐼 −𝑊𝑊)

subject to 𝑌𝑌⊤𝑌𝑌 = 𝑛𝑛𝐼𝐼 and ∑𝑖𝑖 𝑦𝑦𝑖𝑖 = 0
Consider first case 𝑞𝑞 = 1 (that is, 𝑌𝑌 is column vector and 
𝐼𝐼 = 1)
ℒ 𝑌𝑌, 𝜇𝜇 = 𝑌𝑌⊤𝑀𝑀𝑌𝑌 − 𝜇𝜇 𝑌𝑌⊤𝑌𝑌

𝑛𝑛
− 1 − 𝜈𝜈𝑌𝑌

𝜕𝜕ℒ
𝜕𝜕𝑌𝑌

= 2𝑀𝑀𝑌𝑌 − 2 𝜇𝜇
𝑛𝑛
𝑌𝑌 − 𝜈𝜈 = 0 ⇒ 𝑀𝑀𝑌𝑌 = 𝜇𝜇

𝑛𝑛
𝑌𝑌 (Set 𝜈𝜈 = 0)

Hence 𝑌𝑌 is a eigenvector of 𝑀𝑀
For 𝑞𝑞 ≥ 2, simply observe that by the min-max theorem 
the eigenvectors for 𝑀𝑀 minimizes 𝑌𝑌⊤𝑀𝑀𝑌𝑌
Finally, since 𝑊𝑊𝟏𝟏 = 𝟏𝟏, 𝐼𝐼 −𝑊𝑊 𝟏𝟏 = 0
⇒ 𝐼𝐼 −𝑊𝑊 ⊤ 𝐼𝐼 −𝑊𝑊 𝟏𝟏 = 0 ⇒ 𝑀𝑀𝟏𝟏 = 0
⇒ 𝑌𝑌 = 𝟏𝟏 is a eigenvector of zero eigenvalue (excluded)
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LLE algorithm
1. Construct neighborhood graph

Find nearest 𝑘𝑘 neighbors 𝑁𝑁 𝑥𝑥𝑖𝑖 of each point 𝑥𝑥𝑖𝑖
2. Find matrix 𝑊𝑊 which minimizes its sum of squares 

error in representing each 𝑥𝑥𝑖𝑖 with its neighbors
For each 𝑖𝑖

Let 𝑥𝑥𝑗𝑗′ → 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 and Let 𝐶𝐶𝑖𝑖 = 𝑥𝑥1′ , … , 𝑥𝑥𝑖𝑖′

Solve 𝐺𝐺𝑖𝑖𝑤𝑤𝑖𝑖 = 𝟏𝟏 where 𝐺𝐺𝑖𝑖 = 𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖T
Scale 𝑤𝑤𝑖𝑖 such that 𝑤𝑤𝑖𝑖𝟏𝟏 = 1

Collect 𝑤𝑤𝑖𝑖 into 𝑊𝑊
3. Find low dimensional 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 that is most 

consistent with 𝑊𝑊
Find eigenvectors for 𝑀𝑀 = 𝐼𝐼 −𝑊𝑊 ⊤(𝐼𝐼 −𝑊𝑊) with 
smallest eigenvalues
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LLE out-of-sample examples
 Mapping of out-of-sample examples not 

immediately available like in Kernel PCA
 Discussed in Bengio et al. “Out-of-Sample 

extensions for LLE, Isomap, MDS, Eigenmaps, and 
Spectral Clustering”, 2003
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Laplacian Eigenmap idea
 The normalized Laplacian 𝐿𝐿 encodes 

structure of the graph
 The eigenvectors of 𝐿𝐿 known to encode 

important features of the graph (see slides on 
Spectral Clustering)

 The Laplacian can be considered as 
eigenfunctions similar to kernel functions
 Discussed in Bengio et al. “Learning 

eigenfunctions links Spectral Embedding and 
Kernel PCA”, 2004

 Readily gives rise to using Laplacian in similar 
way as Kernel PCA
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Laplacian Eigenmap algorithm
1. Construct neighborhood graph
 Find nearest 𝑘𝑘 neighbors 𝑁𝑁 𝑥𝑥𝑖𝑖 of each point 𝑥𝑥𝑖𝑖
 Construct a neighborhood graph by connecting 

𝑥𝑥𝑖𝑖 to the points in 𝑁𝑁(𝑥𝑥𝑖𝑖) with Gaussian heat 
function 𝑒𝑒−𝑑𝑑2/𝑡𝑡 set as edge weight (for some 
hyperparameter 𝑡𝑡)

2. Construct normalized Laplacian 𝐿𝐿 and 
degree matrix 𝐷𝐷

3. Find the eigenvectors for the generalized 
eigenvalue system 𝐿𝐿𝑢𝑢 = 𝜆𝜆𝐷𝐷𝑢𝑢
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Laplacian Eigenmap discussions
 Like in LLE, Laplacian Eigenmap models 

edge weight as transition probability
 However, since edge weight 𝑒𝑒−𝑑𝑑2/𝑡𝑡 in 

Laplacian Eigenmap naturally falls off with 
distance ⇒ no need to find 𝑘𝑘 neighbors
 t-SNE computes 𝑒𝑒−𝑑𝑑2/2𝜎𝜎2 for pairwise

points with 𝜎𝜎 discovered from data
 Mapping of out-of-sample examples not 

immediately available like in Kernel PCA
 Discussed in Bengio et al. “Out-of-Sample 

extensions for LLE, Isomap, MDS, Eigenmaps, and 
Spectral Clustering”, 2003
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Comparison
Isomap LLE Laplacian Eigenmap

Edge weight Approximated 
geodesic distance

Coefficients 𝑤𝑤𝑖𝑖𝑗𝑗 in 
reconstructing 𝑥𝑥𝑖𝑖
(transition probability)

Gaussian 𝑒𝑒−𝑑𝑑2/𝜎𝜎

(transition probability)

Pairwise
edge or 
neighborhood 
only

Pairwise
Distant pairs use 
shortest path 
distance

Neighborhood only
Matrix contains mostly 
zeros

Neighborhood only
Matrix contains mostly 
zeros

Matrix to 
decompose

Edge weight Edge weight Normalized Laplacian

Embedding
into lower 
dimensional 
space

Use principal 
eigenvectors from 
MDS

Find low dimensional 
points that give the 
same 𝑤𝑤𝑖𝑖𝑗𝑗 (shown to be 
principal eigenvectors) 

Use principal 
eigenvectors that 
retain graph structure

Edge weight
preservation

Preserves 
Euclidean distance

Normalized, scale-free Preserves 𝑒𝑒−𝑑𝑑2/𝑡𝑡
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