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Dimensionality Reduction
 Linear methods
 PCA (Principal Component Analysis)

 cMDS (Classical Multidimensional Scaling)

 Non-linear methods
 KPCA (Kernel PCA)

 mMDS (Metric MDS)

 Isomap
 LLE (Locally Linear Embedding)

 Laplacian Eigenmap
 t-SNE (t-distributed Stochastic Neighbor Embedding)

 UMAP (Uniform Manifold Approximation and Projection)
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Multidimensional Scaling (MDS)
 Classical MDS (cMDS)
 Reconstruct coordinates from Euclidean 

distance matrix

 Metric MDS (mMDS)
 Redefined cMDS problem with loss function 

defined on any metric

 Non-metric MDS (nMDS)
 When only an ordering on the distances is 

known

 Generalized (kernel) classical MDS
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Classical MDS (cMDS)
 Reconstruct a set of points given their 

Euclidean distances
 Given 𝑛𝑛 × 𝑛𝑛 distance matrix 𝐷𝐷 = 𝑑𝑑𝑖𝑖𝑖𝑖 , 

reconstruct coordinates 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ ℝ𝑚𝑚 with 
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 = 𝑑𝑑𝑖𝑖𝑖𝑖
 The solution 𝑋𝑋 = 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ⊤ ∈ ℝ𝑛𝑛×𝑚𝑚 is not 

unique due to infinitely many translations, 
rotations, and reflections 

 A centered solution 𝑋𝑋 = 𝑥𝑥𝑖𝑖𝑖𝑖 (i.e. ∀𝑘𝑘, 1 ≤ 𝑘𝑘 ≤
𝑚𝑚, ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 = 0) can be found using cMDS
 Note that solution is still not unique
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cMDS idea
 Given 𝐷𝐷 = 𝑑𝑑𝑖𝑖𝑖𝑖 , first note that Euclidean 

distance 𝑑𝑑𝑖𝑖𝑖𝑖 is related to 𝑋𝑋 = 𝑥𝑥𝑖𝑖𝑖𝑖 through
𝑑𝑑𝑖𝑖𝑖𝑖

2 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
⊤ 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑖𝑖⊤𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗⊤𝑥𝑥𝑗𝑗 − 2𝑥𝑥𝑖𝑖⊤𝑥𝑥𝑗𝑗

 On the other hand, for 𝑋𝑋 where ∀𝑘𝑘, 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚, 
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 = 0, we can show that

𝐴𝐴 = −2𝑋𝑋𝑋𝑋⊤

where 𝐴𝐴 = 𝑑𝑑𝑖𝑖𝑖𝑖2

 Then it suffices that we compute −𝐴𝐴/2 to obtain 
𝑋𝑋𝑋𝑋⊤

 Finally, since 𝑋𝑋𝑋𝑋⊤ can be factorized to recover 𝑋𝑋
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cMDS algorithm
 Step 1. Compute matrix 𝐶𝐶𝐶𝐶𝐶𝐶

Given 𝐷𝐷 = 𝑑𝑑𝑖𝑖𝑖𝑖 , computed 𝐶𝐶𝐶𝐶𝐶𝐶
where
𝐴𝐴 = −1

2
𝑑𝑑𝑖𝑖𝑖𝑖2

𝐶𝐶 = 𝐼𝐼 − 1
𝑛𝑛
𝟏𝟏⊤𝟏𝟏

 𝐶𝐶𝐶𝐶𝐶𝐶 simultaneously centers the rows and 
columns of the squared distance matrix 𝐴𝐴
(double centering)

 It can be shown that 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑋𝑋𝑋𝑋⊤ for centered 
𝑋𝑋 (proof in later slides) 
⇒ 𝐶𝐶𝐶𝐶𝐶𝐶 is positive semi-definite (proof later)
⇒ 𝐶𝐶𝐶𝐶𝐶𝐶 decompose to non-negative values
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cMDS algorithm
 Step 2. Decompose 𝐶𝐶𝐶𝐶𝐶𝐶 into orthonormal basis

Method 1: Eigendecompose 𝐶𝐶𝐶𝐶𝐶𝐶 into 𝑄𝑄Λ𝑄𝑄⊤
 Then, 𝑋𝑋 can be computed as 𝑄𝑄Λ1/2

 𝑄𝑄Λ𝑄𝑄⊤ = 𝑄𝑄Λ1/2Λ1/2𝑄𝑄⊤ = 𝑄𝑄Λ1/2 𝑄𝑄Λ1/2 ⊤ = 𝑋𝑋𝑋𝑋⊤

Method 2: Decompose 𝐶𝐶𝐶𝐶𝐶𝐶 directly into 𝑋𝑋𝑋𝑋⊤
using Cholesky factorization
 Only works if 𝐶𝐶𝐶𝐶𝐶𝐶 is positive definite
 𝐶𝐶𝐶𝐶𝐶𝐶 is (positive semi-definite and) positive definite iff 

all 𝑥𝑥𝑖𝑖 are linearly independent
 Cholesky in numpy/scipy will not execute unless the input is 

positive definite
 Use one that works (e.g. pyre) or write your own with pivoting
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cMDS algorithm
 Step 3. Choose from the decomposed basis

Both methods face the problem that the output 
matrix is not of dimension 𝑛𝑛 × 𝑚𝑚
 Eigendecomposition 𝑄𝑄 ∈ ℝ𝑛𝑛×𝑛𝑛

 Cholesky factorization 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑛𝑛

 If 𝑛𝑛 < 𝑚𝑚 (fewer datapoints than features)
 No problem in embedding the points since 𝑛𝑛

points can fit on an 𝑛𝑛 − 1 -D plane
 Naturally suited for dimensionality reduction 

purpose if use all 𝑛𝑛 − 1 eigenvectors
 If need fewer than 𝑛𝑛 − 1 -D space, see later 

slides
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cMDS algorithm
 Step 3. Choose from the decomposed basis

Both methods face the problem that the output 
matrix is not of dimension 𝑛𝑛 × 𝑚𝑚
 Eigendecomposition 𝑄𝑄 ∈ ℝ𝑛𝑛×𝑛𝑛

 Cholesky factorization 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑛𝑛

 If 𝑛𝑛 > 𝑚𝑚 (more datapoints than features)
Problem 1
 𝐶𝐶𝐶𝐶𝐶𝐶 is not positive definite since there are 

insufficient features for linear independence 
 Bad news for Cholesky factorization
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cMDS algorithm
 Step 3. Choose from the decomposed basis

Both methods face the problem that the output 
matrix is not of dimension 𝑛𝑛 × 𝑚𝑚
 Eigendecomposition 𝑄𝑄 ∈ ℝ𝑛𝑛×𝑛𝑛

 Cholesky factorization 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑛𝑛

 If 𝑛𝑛 > 𝑚𝑚 (more datapoints than features)
Problem 2
 Need to deduce 𝑚𝑚

 In an ideal eigendecomposition there will be
rank 𝑋𝑋𝑋𝑋⊤ (≤ 𝑚𝑚) positive eigenvalues and
𝑛𝑛 − rank(𝑋𝑋𝑋𝑋⊤) zero eigenvalues

 But eigendecomposition usually not ideal with zero 
eigenvalues, often resulting in complex numbers
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cMDS algorithm
 Step 3. Choose from the decomposed basis

 Many implementations will output negative 
eigenvalues, so extra care is needed

 For eigendecomposition
 Remove the eigenpairs with small, negative, or 

complex eigenvalues, forming 𝑄𝑄1 and Λ1
 Choose the set of eigenvalues 𝑆𝑆 from Λ1 such that 

∑𝜆𝜆′∈𝑆𝑆 𝜆𝜆
′

∑𝜆𝜆∈Λ1 𝜆𝜆
is sufficiently large

 Finally, compute 𝑄𝑄1Λ1
1/2 and retain only those in 𝑆𝑆

 For Cholesky factorization
 Choose the vectors with the largest norms



© 2021. Ng Yen Kaow

 Will expand 𝑋𝑋𝑋𝑋⊤ and 𝐶𝐶𝐶𝐶𝐶𝐶 and show equivalence
 Given 𝑋𝑋 ∈ ℝ𝑚𝑚×𝑛𝑛, denote 𝑋𝑋𝑋𝑋⊤ as 𝐵𝐵, then we can 

write the Euclidean distance between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 as
𝑑𝑑𝑖𝑖𝑖𝑖2 = 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑗𝑗 − 2𝑏𝑏𝑖𝑖𝑗𝑗 (1)

 If ∀𝑘𝑘, ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 = 0 (𝑋𝑋 is centered), then
∑𝑗𝑗=1𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖 = ∑𝑗𝑗=1𝑛𝑛 ∑𝑘𝑘=1𝑚𝑚 𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗 = ∑𝑘𝑘=1𝑚𝑚 𝑥𝑥𝑖𝑖𝑖𝑖 ∑𝑗𝑗=1𝑛𝑛 𝑥𝑥𝑗𝑗𝑗𝑗 = 0

Denote tr(𝐵𝐵) = ∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖, ∵ ∑𝑗𝑗=1𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖 = 0, (1) ⇒
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 = ∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖 + ∑𝑖𝑖=1𝑛𝑛 𝑏𝑏𝑗𝑗𝑗𝑗 = tr(𝐵𝐵) + 𝑛𝑛𝑏𝑏𝑗𝑗𝑗𝑗
∑𝑗𝑗=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 = ∑𝑗𝑗=1𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖 + ∑𝑗𝑗=1𝑛𝑛 𝑏𝑏𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑏𝑏𝑖𝑖𝑖𝑖 + tr 𝐵𝐵 (2)
∑𝑖𝑖,𝑗𝑗=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 = ∑𝑖𝑖,𝑗𝑗=1𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖 + ∑𝑖𝑖,𝑗𝑗=1𝑛𝑛 𝑏𝑏𝑗𝑗𝑗𝑗 = 2𝑛𝑛tr 𝐵𝐵

(Proof) 𝑋𝑋𝑋𝑋⊤ = 𝐶𝐶𝐴𝐴𝐶𝐶 for centered 𝑋𝑋
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(Proof) 𝑋𝑋𝑋𝑋⊤ = 𝐶𝐶𝐶𝐶𝐶𝐶 for centered 𝑋𝑋
Rewrite (1) as 𝑏𝑏𝑖𝑖𝑖𝑖 = 1

2
𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖2 , then (1)+(2)

𝑏𝑏𝑖𝑖𝑖𝑖 = 1
2

1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 − tr 𝐵𝐵 + ∑𝑗𝑗=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 − tr 𝐵𝐵 − 𝑑𝑑𝑖𝑖𝑖𝑖2

= 1
2

1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 + 1

𝑛𝑛
∑𝑗𝑗=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 −

1
𝑛𝑛
∑𝑖𝑖,𝑗𝑗=1𝑛𝑛 𝑑𝑑𝑖𝑖𝑖𝑖2 − 𝑑𝑑𝑖𝑖𝑖𝑖2

Done, but for notation simplicity let 𝑎𝑎𝑖𝑖𝑗𝑗 = −1
2
𝑑𝑑𝑖𝑖𝑖𝑖2 , then

𝑏𝑏𝑖𝑖𝑖𝑖 = − 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖 −

1
𝑛𝑛
∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖 + 1

𝑛𝑛2
∑𝑖𝑖,𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖

Further make things easy to see with
𝑎𝑎𝑖𝑖∎ = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖, 𝑎𝑎∎𝑗𝑗 = 1

𝑛𝑛
∑𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖, 𝑎𝑎∎∎ = 1

𝑛𝑛2
∑𝑖𝑖,𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖

⇒ 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖∎ − 𝑎𝑎∎𝑗𝑗 + 𝑎𝑎∎∎
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(Proof) 𝑋𝑋𝑋𝑋⊤ = 𝐶𝐶𝐶𝐶𝐶𝐶 for centered 𝑋𝑋
 Now expand 𝐶𝐶𝐶𝐶𝐶𝐶 into terms consisting of 𝑎𝑎𝑖𝑖𝑖𝑖

Given 𝐴𝐴 = 𝑎𝑎𝑖𝑖𝑖𝑖 , observe that
1 1 … 1 𝐴𝐴 = 𝑛𝑛 𝑎𝑎𝑖𝑖∎
𝐴𝐴 1 1 … 1 = 𝑛𝑛 𝑎𝑎∎𝑗𝑗 (3)
1 1 … 1 𝐴𝐴[1 1 … 1] = 𝑛𝑛2 𝑎𝑎∎∎

On the other hand,
𝐶𝐶𝐴𝐴𝐶𝐶 = 𝐼𝐼 − 1

𝑛𝑛
𝐽𝐽 𝐴𝐴 𝐼𝐼 − 1

𝑛𝑛
𝐽𝐽

= 𝐴𝐴 − 1
𝑛𝑛
𝐽𝐽𝐽𝐽 − 1

𝑛𝑛
𝐴𝐴𝐴𝐴 + 1

𝑛𝑛2
𝐽𝐽𝐽𝐽𝐽𝐽 (4)

Finally, (3)+(4) gives
𝐶𝐶𝐴𝐴𝐶𝐶 𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖∎ − 𝑎𝑎∎𝑗𝑗 + 𝑎𝑎∎∎ = 𝑏𝑏𝑖𝑖𝑖𝑖
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(Proof) 𝐶𝐶𝐶𝐶𝐶𝐶 is PSD
 Follows immediately from the fact that 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑋𝑋𝑋𝑋⊤, an inner product
 An inner product 𝐵𝐵 = 𝑋𝑋𝑋𝑋⊤ of any matrix 𝑋𝑋

(centered or not) is called a Gram matrix, or 
Gramian

 Gramians are known to be positive semi-
definite (see proof in other slides)
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Comparison with PCA
MDS PCA

Input Euclidean distances 𝐷𝐷 (𝑛𝑛 × 𝑛𝑛) Dataset 𝑋𝑋 (𝑛𝑛 × 𝑚𝑚) 
Matrix
considered in 
theory

Gramian 𝑋𝑋𝑋𝑋⊤
(𝑛𝑛 × 𝑛𝑛)

Covariance matrix 𝑋𝑋⊤𝑋𝑋
(𝑚𝑚 × 𝑚𝑚) 

Matrix used for 
decomposition

−1
2
𝐶𝐶𝐷𝐷2𝐶𝐶 (𝑛𝑛 × 𝑛𝑛)

𝐶𝐶=centering matrix
𝑋𝑋⊤𝑋𝑋 (𝑚𝑚 × 𝑚𝑚) 

Output Reconstructed 𝑋𝑋, or 𝑋𝑋 in 
lower dimension

Principal directions and
principal component 
scores (𝑋𝑋𝑋𝑋)

Decomposition 
Method

Cholesky factorization or 
Eigendecomposition

SVD or 
Eigendecomposition

𝑛𝑛 < 𝑚𝑚 No problem No problem
𝑚𝑚 < 𝑛𝑛 For exact reconstruction of 𝑋𝑋, 

rank deficiency revealed in 
eigendecomposition needed
to deduce 𝑚𝑚

No problem
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Projection

𝑋𝑋𝑄𝑄1

Comparison with PCA

Covariance 
𝐾𝐾 = 𝑋𝑋⊤𝑋𝑋

Gram 
matrix 
𝐺𝐺 = 𝑋𝑋𝑋𝑋⊤

Points, 𝑋𝑋

𝐶𝐶 −
1
2𝐷𝐷

2 𝐶𝐶

= 𝑋𝑋𝑋𝑋⊤

𝑋𝑋⊤𝑋𝑋

𝑄𝑄2Λ1/2

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

PCA
MDS

Eigenspace
Λ (same) 
𝑄𝑄1, 𝑄𝑄2

Cholesky
Factorization

Eigen-
decomposition
𝐾𝐾 = 𝑄𝑄1Λ𝑄𝑄1⊤
𝐺𝐺 = 𝑄𝑄2Λ𝑄𝑄2⊤

(Euclidean) 
Distance

𝐷𝐷

MDS end-point/ PCA start-point MDS start-point

PCA end-point 2 
(principal component 

scores)

𝑔𝑔𝑖𝑖𝑖𝑖 + 𝑔𝑔𝑗𝑗𝑗𝑗 − 2𝑔𝑔𝑖𝑖𝑖𝑖
= 𝑑𝑑𝑖𝑖𝑖𝑖

PCA end-point 1
(principal directions)

SVD
𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤
𝑈𝑈 = 𝑄𝑄1
𝑆𝑆2 = Λ

𝑈𝑈𝑈𝑈 = 𝑋𝑋𝑄𝑄1

𝑋𝑋𝑄𝑄1
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Equivalence of PCA and cMDS
 Principal component scores 𝑋𝑋𝑋𝑋 are the 

same as the reconstructed 𝑋𝑋 = 𝑄𝑄Λ1/2

 Given SVD of 𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤

 𝑈𝑈 = eigenbasis of 𝑋𝑋𝑋𝑋⊤, or 𝑄𝑄
 𝑉𝑉 = eigenbasis of 𝑋𝑋⊤𝑋𝑋
 𝑆𝑆 = eigenvalues of 𝑋𝑋𝑋𝑋⊤, or Λ1/2

Clearly 𝑈𝑈𝑈𝑈 = 𝑄𝑄Λ1/2

However, 𝑋𝑋𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤𝑉𝑉 = 𝑈𝑈𝑈𝑈
Hence 𝑄𝑄Λ1/2 = 𝑋𝑋𝑋𝑋

 Since the dimensionality reduction for both 
methods works at the eigenbasis 𝑄𝑄 and 𝑉𝑉
respectively, PCA is equivalent to cMDS 
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Limitation of cMDS
 For cMDS to work, input distances have to be 

Euclidean

 More precisely, the Pythagorean principle

𝑑𝑑𝑖𝑖𝑖𝑖
2 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

⊤ 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

(or, in terms of the Gramian, 𝑑𝑑𝑖𝑖𝑖𝑖2 = 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑗𝑗 − 2𝑏𝑏𝑖𝑖𝑖𝑖)

is used in establishing the relation 𝑋𝑋𝑋𝑋⊤ = 𝐶𝐶𝐶𝐶𝐶𝐶
 Such a relationship cannot be assumed for 

most datasets

 𝑋𝑋𝑋𝑋⊤ = 𝐶𝐶𝐶𝐶𝐶𝐶 does not hold for other metrics
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Metric MDS (mMDS)
 Given distance matrix 𝛿𝛿𝑖𝑖𝑖𝑖 𝑛𝑛×𝑛𝑛

and weights 
𝑤𝑤𝑖𝑖𝑖𝑖 𝑛𝑛×𝑛𝑛

, find 𝑋𝑋 = 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 ⊤ where 𝑥𝑥𝑖𝑖 ∈
ℝ𝑟𝑟, which minimizes

stress 𝑋𝑋 = �
𝑖𝑖,𝑗𝑗,𝑖𝑖<𝑗𝑗

𝑤𝑤𝑖𝑖𝑖𝑖 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 − 𝛿𝛿𝑖𝑖𝑖𝑖
2

where 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 denotes the distance 
between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗
 The weights 𝑤𝑤𝑖𝑖𝑖𝑖 allow removing entries 

where 𝛿𝛿𝑖𝑖𝑖𝑖 is not available
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SMACOF Algorithm for mMDS
 Minimize stress 𝑋𝑋 through majorization
 stress 𝑋𝑋 = ∑𝑖𝑖,𝑗𝑗,𝑖𝑖<𝑗𝑗 𝑤𝑤𝑖𝑖𝑖𝑖 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) − 𝛿𝛿𝑖𝑖𝑖𝑖

2

= ∑𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑2 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 + ∑𝑤𝑤𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖2 − 2∑𝑤𝑤𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
Since
 ∑𝑤𝑤𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖2 is constant, 𝐶𝐶
 ∑𝑤𝑤𝑖𝑖𝑖𝑖𝑑𝑑2 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 is quadratic, tr 𝑋𝑋′𝑉𝑉𝑋𝑋
 ∑𝑤𝑤𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = tr 𝑋𝑋′𝐵𝐵 𝑋𝑋 𝑋𝑋 ≥ tr 𝑋𝑋′ 𝐵𝐵 𝑍𝑍 𝑍𝑍

where 𝐵𝐵 𝑍𝑍 = 𝑏𝑏𝑖𝑖𝑖𝑖 for 

𝑏𝑏𝑖𝑖𝑖𝑖 = �
− 𝑤𝑤𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖

𝑑𝑑 𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗
if 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ≠ 0 and 𝑖𝑖 ≠ 𝑗𝑗

0 if 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = 0 and 𝑖𝑖 ≠ 𝑗𝑗

𝑏𝑏𝑖𝑖𝑖𝑖 = −∑𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
𝑛𝑛 𝑏𝑏𝑖𝑖𝑖𝑖
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SMACOF Algorithm for mMDS
 stress 𝑋𝑋 = 𝐶𝐶 + tr 𝑋𝑋′𝑉𝑉𝑉𝑉 − 2tr 𝑋𝑋′𝐵𝐵 𝑋𝑋 𝑋𝑋

which is bounded above by
𝐶𝐶 + tr 𝑋𝑋′𝑉𝑉𝑉𝑉 − 2tr 𝑋𝑋′𝐵𝐵 𝑍𝑍 𝑍𝑍 = 𝜏𝜏 𝑋𝑋,𝑍𝑍

 Majorization iteratively updates 𝑋𝑋𝑘𝑘 at the 
𝑘𝑘𝑡𝑡𝑡 iteration to min

𝑋𝑋
𝜏𝜏 𝑋𝑋,𝑋𝑋𝑘𝑘−1

 stress 𝑋𝑋 will decrease monotonically
 Stops iteration when stress 𝑋𝑋𝑘𝑘 − stress 𝑋𝑋𝑘𝑘−1

is below a given threshold
 Proofs for the majorization method requires too 

much details to provide here
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Sammon mapping
 A special case of stress 𝑋𝑋 where weights are 

inversely proportional to distance 𝛿𝛿𝑖𝑖𝑖𝑖
 Emphasize accuracy on small 𝛿𝛿𝑖𝑖𝑖𝑖 distances

 Given distance matrix 𝛿𝛿𝑖𝑖𝑖𝑖 𝑛𝑛×𝑛𝑛
, find 𝑋𝑋 =

𝑥𝑥1 … 𝑥𝑥𝑛𝑛 T where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑟𝑟, which minimizes

stress 𝑋𝑋 =
1

∑𝑖𝑖,𝑗𝑗,𝑖𝑖<𝑗𝑗 𝛿𝛿𝑖𝑖𝑖𝑖
�
𝑖𝑖,𝑗𝑗,𝑖𝑖<𝑗𝑗

𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 − 𝛿𝛿𝑖𝑖𝑖𝑖
2

𝛿𝛿𝑖𝑖𝑖𝑖

where 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 denotes the distance between 𝑥𝑥𝑖𝑖
and 𝑥𝑥𝑗𝑗

 The simpler stress 𝑋𝑋 allows a gradient descent 
optimization
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nMDS vs cMDS
 Similarity vs dissimilarity

 cMDS attempts to recover 𝑋𝑋𝑋𝑋⊤, a measure of the 
similarity between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗

 nMDS attempts to recover distances 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 , a 
measure of the dissimilarity between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗

 Linear vs non-linear
 cMDS attempts to recover 𝑋𝑋𝑋𝑋⊤, a linear kernel 
 nMDS, for instance Sammon mapping, can be 

considered as recovering a non-linear distance 
measure with an inverse (1/𝛿𝛿) factor

 Closed-form vs iterative method
 cMDS is solved through a closed-form solution 
 nMDS can only be approximated iteratively using 

gradient descent or majorization
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