Dimensionality Reduction Part 2: MDS

Ng Yen Kaow

© 2021. Ng Yen Kaow

Dimensionality Reduction

- Linear methods
 - PCA (Principal Component Analysis)
 - **CMDS** (Classical Multidimensional Scaling)
- Non-linear methods
 - KPCA (Kernel PCA)
 - **mMDS** (Metric MDS)
 - Isomap
 - LLE (Locally Linear Embedding)
 - Laplacian Eigenmap
 - t-SNE (t-distributed Stochastic Neighbor Embedding)
 - UMAP (Uniform Manifold Approximation and Projection)

Multidimensional Scaling (MDS)

- Classical MDS (cMDS)
 - Reconstruct coordinates from Euclidean distance matrix
- Metric MDS (mMDS)
 - Redefined cMDS problem with loss function defined on any metric
- Non-metric MDS (nMDS)
 - When only an ordering on the distances is known
- Generalized (kernel) classical MDS

Classical MDS (cMDS)

- Reconstruct a set of points given their
 Euclidean distances
- □ Given $n \times n$ distance matrix $D = (d_{ij})$, reconstruct coordinates $x_1, ..., x_n \in \mathbb{R}^m$ with $||x_i - x_j|| = d_{ij}$
 - The solution $X = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^\top \in \mathbb{R}^{n \times m}$ is not unique due to infinitely many translations, rotations, and reflections
 - A centered solution X = (x_{ij}) (i.e. ∀k, 1 ≤ k ≤ m, ∑_i x_{ik} = 0) can be found using cMDS
 Note that solution is still not unique

cMDS idea

- Given $D = (d_{ij})$, first note that Euclidean distance d_{ij} is related to $X = (x_{ij})$ through $(d_{ij})^2 = (x_i - x_j)^T (x_i - x_j) = x_i^T x_i + x_j^T x_j - 2x_i^T x_j$
- □ On the other hand, for *X* where $\forall k, 1 \le k \le m$, $\sum_i x_{ik} = 0$, we can show that

$$A = -2XX^{\mathsf{T}}$$

where $A = (d_{ij}^2)$

- □ Then it suffices that we compute -A/2 to obtain XX^{\top}
- □ Finally, since XX^{\top} can be factorized to recover X

Step 1. Compute matrix *CAC* Given $D = (d_{ij})$, computed *CAC*

where

- $A = \left(-\frac{1}{2}d_{ij}^2\right)$ $C = I \frac{1}{n}\mathbf{1}^{\mathsf{T}}\mathbf{1}$
- CAC simultaneously centers the rows and columns of the squared distance matrix A (double centering)
- □ It can be shown that $CAC = XX^{\top}$ for centered *X* (proof in later slides)
 - \Rightarrow *CAC* is positive semi-definite (proof later)
 - \Rightarrow CAC decompose to non-negative values

□ **Step 2**. Decompose *CAC* into orthonormal basis

Method 1: Eigendecompose *CAC* into $Q\Lambda Q^{\top}$ Then, *X* can be computed as $Q\Lambda^{1/2}$ $Q\Lambda Q^{\top} = Q\Lambda^{1/2}\Lambda^{1/2}Q^{\top} = Q\Lambda^{1/2}(Q\Lambda^{1/2})^{\top} = XX^{\top}$

Method 2: Decompose *CAC* directly into XX^{\top} using Cholesky factorization

- Only works if CAC is positive definite
- CAC is (positive semi-definite and) positive definite iff all x_i are linearly independent
 - Cholesky in numpy/scipy will not execute unless the input is positive definite
 - □ Use one that works (e.g. pyre) or write your own with pivoting

- Step 3. Choose from the decomposed basis
 Both methods face the problem that the output matrix is not of dimension $n \times m$
 - Eigendecomposition $Q \in \mathbb{R}^{n \times n}$
 - Cholesky factorization $L \in \mathbb{R}^{n \times n}$
- □ If n < m (fewer datapoints than features)
 - No problem in embedding the points since n points can fit on an (n 1)-D plane
 - Naturally suited for dimensionality reduction purpose if use all n 1 eigenvectors
 - □ If need fewer than (n 1)-D space, see later slides

- Step 3. Choose from the decomposed basis
 Both methods face the problem that the output matrix is not of dimension $n \times m$
 - Eigendecomposition $Q \in \mathbb{R}^{n \times n}$
 - Cholesky factorization $L \in \mathbb{R}^{n \times n}$
- □ If n > m (more datapoints than features) Problem 1
 - CAC is not positive definite since there are insufficient features for linear independence
 - Bad news for Cholesky factorization

- Step 3. Choose from the decomposed basis
 Both methods face the problem that the output matrix is not of dimension $n \times m$
 - Eigendecomposition $Q \in \mathbb{R}^{n \times n}$
 - Cholesky factorization $L \in \mathbb{R}^{n \times n}$
- □ If n > m (more datapoints than features) Problem 2
 - Need to deduce m
 - □ In an ideal eigendecomposition there will be $rank(XX^{T})$ (≤ m) positive eigenvalues and $n rank(XX^{T})$ zero eigenvalues
 - But eigendecomposition usually not ideal with zero eigenvalues, often resulting in complex numbers

- □ **Step 3**. Choose from the decomposed basis
 - Many implementations will output negative eigenvalues, so extra care is needed
 - For eigendecomposition
 - Remove the eigenpairs with small, negative, or complex eigenvalues, forming Q_1 and $Λ_1$
 - □ Choose the set of eigenvalues *S* from Λ_1 such that $\frac{\sum_{\lambda' \in S} \lambda'}{\sum_{\lambda \in \Lambda_1} \lambda}$ is sufficiently large
 - □ Finally, compute $Q_1 \Lambda_1^{1/2}$ and retain only those in *S*

For Cholesky factorization

Choose the vectors with the largest norms

(Proof) $XX^{\top} = CAC$ for centered X

□ Will expand XX^T and CAC and show equivalence
 □ Given X ∈ ℝ^{m×n}, denote XX^T as B, then we can write the Euclidean distance between x_i and x_i as

$$d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij}$$
(1)

□ If $\forall k$, $\sum_i x_{ik} = 0$ (X is centered), then

$$\sum_{j=1}^{n} b_{ij} = \sum_{j=1}^{n} \sum_{k=1}^{m} x_{ik} x_{jk} = \sum_{k=1}^{m} x_{ik} \left(\sum_{j=1}^{n} x_{jk} \right) = 0$$

Denote tr(B) = $\sum_{i=1}^{n} b_{ii}$, $\because \sum_{j=1}^{n} b_{ij} = 0$, (1) \Rightarrow

$$\sum_{i=1}^{n} d_{ij}^{2} = \sum_{i=1}^{n} b_{ii} + \sum_{i=1}^{n} b_{jj} = \operatorname{tr}(B) + nb_{jj}$$

$$\sum_{j=1}^{n} d_{ij}^{2} = \sum_{j=1}^{n} b_{ii} + \sum_{j=1}^{n} b_{jj} = nb_{ii} + \operatorname{tr}(B)$$

$$\sum_{i,j=1}^{n} d_{ij}^{2} = \sum_{i,j=1}^{n} b_{ii} + \sum_{i,j=1}^{n} b_{jj} = 2n\operatorname{tr}(B)$$
(2)

(Proof) $XX^{\top} = CAC$ for centered X Rewrite (1) as $b_{ij} = \frac{1}{2} (b_{ii} + b_{jj} - d_{ij}^2)$, then (1)+(2) $b_{ij} = \frac{1}{2} (\frac{1}{n} (\sum_{i=1}^n d_{ij}^2 - \operatorname{tr}(B) + \sum_{j=1}^n d_{ij}^2 - \operatorname{tr}(B)) - d_{ij}^2)$ $= \frac{1}{2} (\frac{1}{n} (\sum_{i=1}^n d_{ij}^2 + \frac{1}{n} \sum_{j=1}^n d_{ij}^2 - \frac{1}{n} \sum_{i,j=1}^n d_{ij}^2) - d_{ij}^2)$

Done, but for notation simplicity let $a_{ij} = -\frac{1}{2}d_{ij}^2$, then $b_{ij} = -\frac{1}{n}\sum_{i=1}^n a_{ij} - \frac{1}{n}\sum_{j=1}^n a_{ij} + \frac{1}{n^2}\sum_{i,j=1}^n a_{ij} + \frac{1}{n^2}$

Further make things easy to see with

 $a_{i\bullet} = \frac{1}{n} \sum_{i=1}^{n} a_{ij}, \ a_{\bullet j} = \frac{1}{n} \sum_{j=1}^{n} a_{ij}, \ a_{\bullet \bullet} = \frac{1}{n^2} \sum_{i,j=1}^{n} a_{ij}$ $\Rightarrow b_{ij} = a_{ij} - a_{i\bullet} - a_{\bullet j} + a_{\bullet \bullet}$

(Proof) $XX^{\top} = CAC$ for centered X

■ Now expand *CAC* into terms consisting of a_{ij} Given $A = (a_{ij})$, observe that $\begin{bmatrix} 1 \ 1 \ \dots 1 \end{bmatrix} A = n(a_{i\bullet})$ $A[1 \ 1 \ \dots 1] = n(a_{\bullet j})$ $\begin{bmatrix} 1 \ 1 \ \dots 1 \end{bmatrix} A = n(a_{\bullet j})$ $\begin{bmatrix} 1 \ 1 \ \dots 1 \end{bmatrix} A = n(a_{\bullet j})$ $\begin{bmatrix} 1 \ 1 \ \dots 1 \end{bmatrix} A = n(a_{\bullet j})$ $\begin{bmatrix} 1 \ 1 \ \dots 1 \end{bmatrix} A = n(a_{\bullet j})$ $\begin{bmatrix} 1 \ 1 \ \dots 1 \end{bmatrix} A = n(a_{\bullet j})$

On the other hand,

$$CAC = \left(I - \frac{1}{n}J\right)A\left(I - \frac{1}{n}J\right)$$
$$= A - \frac{1}{n}JA - \frac{1}{n}AJ + \frac{1}{n^2}JAJ \qquad (4)$$

Finally, (3)+(4) gives $(CAC)_{ij} = a_{ij} - a_{i} - a_{ij} + a_{ij} = b_{ij}$

© 2021. Ng Yen Kaow

(Proof) CAC is PSD

- □ Follows immediately from the fact that $CAC = XX^{T}$, an inner product
 - An inner product $B = XX^{\top}$ of any matrix X (centered or not) is called a Gram matrix, or Gramian
 - Gramians are known to be positive semidefinite (see proof in other slides)

Comparison with PCA

	MDS	PCA
Input	Euclidean distances D ($n \times n$)	Dataset X $(n \times m)$
Matrix considered in theory	Gramian XX^{T} $(n \times n)$	Covariance matrix $X^{T}X$ ($m \times m$)
Matrix used for decomposition	$-\frac{1}{2}CD^2C \ (n \times n)$	$X^{\top}X \ (m \times m)$
	C=centering matrix	
Output	Reconstructed <i>X</i> , or <i>X</i> in lower dimension	Principal directions and principal component scores (XV)
Decomposition Method	Cholesky factorization or Eigendecomposition	SVD or Eigendecomposition
n < m	No problem	No problem
m < n	For exact reconstruction of <i>X</i> , rank deficiency revealed in eigendecomposition needed to deduce <i>m</i>	No problem

Comparison with PCA

Equivalence of PCA and cMDS

- □ Principal component scores *XV* are the same as the reconstructed $X = Q\Lambda^{1/2}$
- □ Given SVD of $X = USV^{\top}$
 - $U = eigenbasis of XX^{\top}$, or Q
 - $V = eigenbasis of X^{\top}X$
 - S = eigenvalues of XX^{\top} , or $\Lambda^{1/2}$ Clearly $US = Q\Lambda^{1/2}$ However, $XV = USV^{\top}V = US$ Hence $Q\Lambda^{1/2} = XV$
- Since the dimensionality reduction for both methods works at the eigenbasis Q and V respectively, PCA is equivalent to cMDS © 2021. Ng Yen Kaow

Limitation of cMDS

- For cMDS to work, input distances have to be Euclidean
- More precisely, the Pythagorean principle

$$(d_{ij})^2 = (x_i - x_j)^{\mathsf{T}} (x_i - x_j)$$

(or, in terms of the Gramian, $d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij}$)

- is used in establishing the relation $XX^{\top} = CAC$
- Such a relationship cannot be assumed for most datasets
- $\Box XX^{\top} = CAC \text{ does not hold for other metrics}$

Metric MDS (mMDS)

□ Given distance matrix $(\delta_{ij})_{n \times n}$ and weights $(w_{ij})_{n \times n}$, find $X = [x_1 \quad \dots \quad x_n]^{\top}$ where $x_i \in \mathbb{R}^r$, which minimizes

stress(X) =
$$\sum_{i,j,i < j} w_{ij} (d(x_i, x_j) - \delta_{ij})^2$$

where $d(x_i, x_j)$ denotes the distance between x_i and x_j

□ The weights w_{ij} allow removing entries where δ_{ij} is not available

SMACOF Algorithm for mMDS

- □ Minimize stress(X) through majorization
- $\square \text{ stress}(X) = \sum_{i,j,i< j} w_{ij} (d(x_i, x_j) \delta_{ij})^2$
- $= \sum w_{ij} d^2 (x_i, x_j) + \sum w_{ij} \delta_{ij}^2 2 \sum w_{ij} \delta_{ij} d(x_i, x_j)$ Since
 - $\sum w_{ij} \delta_{ij}^2$ is constant, *C*
 - $\sum w_{ij} d^2(x_i, x_j)$ is quadratic, tr(X'VX)
 - $\sum w_{ij} \delta_{ij} d(x_i, x_j) = \operatorname{tr}(X'B(X)X) \ge \operatorname{tr}(X')B(Z)Z$ where $B(Z) = (b_{ij})$ for

$$b_{ij} = \begin{cases} -\frac{w_{ij}\delta_{ij}}{d(x_i,x_j)} & \text{if } d(x_i,x_j) \neq 0 \text{ and } i \neq j \\ 0 & \text{if } d(x_i,x_j) = 0 \text{ and } i \neq j \end{cases}$$
$$b_{ii} = -\sum_{j=1, j \neq i}^n b_{ij}$$

SMACOF Algorithm for mMDS

- □ stress(X) = C + tr(X'VX) 2tr(X'B(X)X) which is bounded above by C + tr(X'VX) - 2tr(X'B(Z)Z) = $\tau(X,Z)$
- Majorization iteratively updates X^k at the k^{th} iteration to $\min_X \tau(X, X^{k-1})$
 - stress(X) will decrease monotonically
 - Stops iteration when stress(X^k) stress(X^{k-1})
 is below a given threshold
- Proofs for the majorization method requires too much details to provide here

Sammon mapping

- □ A special case of stress(X) where weights are inversely proportional to distance δ_{ij}
 - Emphasize accuracy on small δ_{ij} distances
- Given distance matrix $(\delta_{ij})_{n \times n}$, find $X = [x_1 \ \dots \ x_n]^T$ where $x_i \in \mathbb{R}^r$, which minimizes stress $(X) = \frac{1}{\sum_{i,j,i < j} \delta_{ij}} \sum_{i,j,i < i} \frac{(d(x_i, x_j) - \delta_{ij})^2}{\delta_{ij}}$
 - where $d(x_i, x_j)$ denotes the distance between x_i and x_j
- The simpler stress(X) allows a gradient descent optimization

nMDS vs cMDS

- □ Similarity vs dissimilarity
 - cMDS attempts to recover XX^{\top} , a measure of the similarity between x_i and x_j
 - nMDS attempts to recover distances $d(x_i, x_j)$, a measure of the dissimilarity between x_i and x_j
- Linear vs non-linear
 - cMDS attempts to recover XX^{\top} , a linear kernel
 - nMDS, for instance Sammon mapping, can be considered as recovering a non-linear distance measure with an inverse (1/δ) factor
- Closed-form vs iterative method
 - cMDS is solved through a closed-form solution
 - nMDS can only be approximated iteratively using gradient descent or majorization