Dimensionality Reduction Part 1: PCA and KPCA

Ng Yen Kaow

Dimensionality Reduction

\square Linear methods

- PCA (Principal Component Analysis)
- CMDS (Classical Multidimensional Scaling)
\square Non-linear methods
- KPCA (Kernel PCA)
- mMDS (Metric MDS)
- Isomap
- LLE (Locally Linear Embedding)
- Laplacian Eigenmap
- t-SNE (t-distributed Stochastic Neighbor Embedding)
- UMAP (Uniform Manifold Approximation and Projection)

Principal Component Analysis

- Let X be an $n \times m$ matrix where each row represents a datapoint in an m-D space
- X is like a spreadsheet with features in column and data cases in the rows
\square We want to identify some form of "principal directions" of X, where ideally

1. The directions should form a basis
2. The directions should be orthogonal
3. The first direction should account for the most variation, the second direction accounts for the most variation after removing the first, and so on

Principal Component Analysis

\square Assume datapoints in X are generated by a random vector $\boldsymbol{X}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right]$, where each v_{i} is a random variable

- Covariance $\operatorname{cov}\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=\mathbb{E}\left[\left(\boldsymbol{v}_{i}-\mu_{i}\right)\left(\boldsymbol{v}_{j}-\mu_{j}\right)\right]$
- Define covariance matrix $M=\left(m_{i j}\right)$ of \boldsymbol{X} where $m_{i j}=\operatorname{cov}\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)$
(M can be estimated from $X=\left(x_{i j}\right)$ as the outer product $X^{c^{\top}} X^{c} / n$ of a centered matrix $X^{c}=\left(x_{i j}^{c}\right)$ where $x_{i j}^{c}=x_{i j}-\mu_{i}$)
\square For the first principal direction, we want to find unit vector $u \in \mathbb{R}^{m}$ such that variance $\operatorname{var}\left(u^{\top} \boldsymbol{X}\right)$ is maximized

Principal Component Analysis

\square The eigenvector u of the covariance matrix M of \boldsymbol{X} with the largest eigenvalue maximizes $\operatorname{var}\left(u^{\top} \boldsymbol{X}\right)$

Gives a matrix
Let $X \in \mathbb{R}^{m}$ be a random vector with since \boldsymbol{X} and μ are column vectors

- mean vector $\mu \in \mathbb{R}^{m}$ and
- covariance matrix $M=\mathbb{E}\left[(\boldsymbol{X}-\mu)(\boldsymbol{X}-\mu)^{\top}\right]$

For any $u \in \mathbb{R}^{n}$, the projection of $u^{\top} \boldsymbol{X}$ has

- $\mathbb{E}\left[u^{\top} \boldsymbol{X}\right]=u^{\top} \mu$ and
- $\operatorname{var}\left(u^{\top} \boldsymbol{X}\right)=\mathbb{E}\left[\left(u^{\top} \boldsymbol{X}-u^{\top} \mu\right)^{2}\right]$

$$
=\mathbb{E}\left[u^{\top}(\boldsymbol{X}-\mu)(\boldsymbol{X}-\mu)^{\top} u\right]=u^{\top} M u
$$

From min-max theorem, $u^{\top} M u$ is maximized when u is the eigenvector of M with the largest eigenvalue

Principal Component Analysis

\square Extend to k principal directions, we want

- k-D subspace of \boldsymbol{X} that is defined by
orthogonal basis $p_{1}, \ldots, p_{k} \in \mathbb{R}^{m}$ and displacement $p_{0} \in \mathbb{R}^{m}$
- Distance from \boldsymbol{X} to this subspace is minimized
- Projection of \boldsymbol{X} onto subspace is $P^{\top} \boldsymbol{X}+\mathrm{p}_{\mathbf{0}}$, where P is matrix whose rows are p_{1}, \ldots, p_{k}
- Squared distance to subspace is $\mathbb{E}\left\|\boldsymbol{X}-\left(P^{\top} \boldsymbol{X}+p_{\mathbf{0}}\right)\right\|^{2}$
- By calculus, $\mathrm{p}_{0}=\mathbb{E}\left\|\boldsymbol{X}-P^{\top} \boldsymbol{X}\right\|=\left(1-P^{\top}\right) \mu$, hence

$$
\mathbb{E}\left\|\boldsymbol{X}-\left(P^{\top} \boldsymbol{X}+p_{\mathbf{0}}\right)\right\|^{2}=\mathbb{E}\|\boldsymbol{X}-\mu\|^{2}-\mathbb{E}\left\|P^{\top}(\boldsymbol{X}-\mu)\right\|^{2}
$$

- To maximize that, need to maximize $\mathbb{E}\left\|P^{\top}(\boldsymbol{X}-\mu)\right\|^{2}=\operatorname{var}\left(P^{\top} \boldsymbol{X}\right)$
- Finally, same as in previous slide, p_{1}, \ldots, p_{k} are eigenvectors of M

Principal Component Analysis

\square As mentioned, given a centered matrix $X^{c}=\left(x_{i j}^{c}\right)$ where $x_{i j}^{c}=x_{i j}-\mu_{i}$, an unbiased estimator of M can be obtained as

$$
\left.M=\frac{1}{n} X^{c^{\top}} X^{c} \quad \text { (or } M=\frac{1}{n} \sum_{i} x_{i}^{c^{\top}} x_{i}^{c}\right)
$$

- This implies that M is positive semi-definite
- Since SVD of X eigendecomposes $X^{c^{\top}} X^{c}$
- We can solve PCA through either 1. Eigendecompose M, or 2. Solve SVD for X^{c}

Advantages of PCA with SVD

\square SVD of matrix X^{c} performs a eigendecomposition of $X^{c^{\top}} X^{c}$

- No need to compute $X^{\mathrm{c}^{\top}} X^{c}$
- Given SVD of $X^{c}=U S V^{\top}$,
$\square V$ is the eigenvectors of $X^{\mathrm{c}^{\top}} X^{c}$
- S^{2} is the eigenvalues of $X^{\mathrm{c}^{\top}} X^{c}$
- Since $X^{c} V=U S V^{\top} V=U S$
$\Rightarrow U S$ gives the projection of X^{c} on the principal directions V (called principal component scores)

Kernel PCA motivation

- Datapoints that do not lie on a linear manifold in the coordinate space may lie on one after some non-linear feature map ϕ to a high dimensional space

Scholkopf, Smola, and Muller. Kernel Principal Component Analysis, 1999

- Principal components in the ϕ-mapped feature space may be more meaningful

Kernel PCA idea

\square Steps to get the principal components in a ϕ mapped feature space:

1. $x^{\prime}=\phi(x)$ and $X^{\prime}=\left[\begin{array}{lll}x_{1}{ }^{\prime} & \ldots & x_{n}{ }^{\prime}\end{array}\right]^{\top}$
2. Center X^{\prime} (deduct column mean)
3. Find covariance matrix, $M^{\prime}=\frac{1}{n} \sum_{i} x_{i}^{\prime \top} x_{i}^{\prime}$
4. Eigendecompose M^{\prime}
\square Difficult since dimension of $x^{\prime}, \operatorname{dim}\left(x^{\prime}\right)$ will be large (or even ∞)
$\Rightarrow M^{\prime}$ has large (or even ∞) dimensions
\Rightarrow Eigendecomposition of M^{\prime} gives large (or infinite) number of eigenvectors, each of large (or infinite) dimensions

Kernel PCA idea

Problem 1: Large number of eigenvectors

\square How many eigenvectors are there actually

- $\operatorname{rank}\left(M^{\prime}\right)$, bounded by the number of datapoints
$\square \quad$ Recall that eigenvectors can be expressed as a linear combination of the datapoints by solving the equations $x_{i}^{\prime}=\sum_{j}\left\langle x_{i}^{\prime}, u_{j}\right\rangle u_{j}$
- j is bounded by $\operatorname{rank}\left(M^{\prime}\right) \Rightarrow$ may be manageable
- However, working with the system of equations is hard because $x_{i}{ }^{\prime}$ and u_{j} are of...
Problem 2: Large (or ∞) dimensions

Kernel method

\square Do not compute $\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)$ or eigenvectors of M^{\prime}

- Allow only comparisons between datapoints in mapped space through inner product $\left\langle x_{i}^{\prime}, x_{j}^{\prime}\right\rangle$
- Sufficient for writing eigenvector u of M^{\prime} in terms of $\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)$ (i.e. project u onto $\left.\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)$
- Sufficient for finding the eigenvalues of M^{\prime}
\square Given point x, sufficient for finding the projection of $\phi(x)$ on the eigenvectors of M^{\prime}
- Use a function $K\left(x_{i}, x_{j}\right)$ (called a kernel function) that does not require computing ϕ to compute $\left\langle x_{i}^{\prime}, x_{j}^{\prime}\right\rangle$
- Conditions for such a function given in later slides

Project eigenvector to $x_{1}^{\prime}, . ., x_{n}^{\prime}$

\square Relate eigenvectors of M^{\prime} with $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ using a computation that involves only $\left\langle x_{i}^{\prime}, x_{j}^{\prime}\right\rangle$
\square Start with the definition of $M^{\prime}=\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{\prime \top} x_{i}{ }^{\prime}\right)$

- Solving $M^{\prime} u=\lambda u$ means $\left(\sum_{i} x_{i}^{\prime \top} x_{i}{ }^{\prime}\right) u=n \lambda u$
- This implies $u=\frac{1}{n \lambda} \sum_{i} x_{i}^{\prime \top} x_{i}^{\prime} u$. Since
$x^{\top} x u \stackrel{\text { Proof later }}{=} x u x^{\top}, u=\frac{1}{n \lambda} \sum_{i} \stackrel{\text { Scalar }}{x_{i}^{\prime}} u x_{i}^{\prime \top}$
Hence can let $u=\sum_{i=1}^{n} \alpha_{i} x_{i}^{\prime \top}$ for $\alpha_{i} \in \mathbb{R}$
$\square \quad \alpha_{1}, \ldots, \alpha_{n}$ project eigenvector u to $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$
\square Place $u^{(r)}=\sum_{i} \alpha_{i}^{(r)} x_{i}^{\prime \top}$ back in $\left(\sum_{i} x_{i}^{\prime \top} x_{i}^{\prime}\right) u=n \lambda u$ - Use superscript r to associate α with its corresponding u and λ

Solving $\alpha_{1}, \ldots, \alpha_{n}$

$$
\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}^{\prime \top} \boldsymbol{x}_{i}^{\prime}\right) \boldsymbol{u}^{(r)}=n \lambda^{(r)} \boldsymbol{u}^{(r)}
$$

Replace $\boldsymbol{u}^{(r)}$ with $\sum_{j} \alpha_{j}^{(r)} \boldsymbol{x}_{j}^{\prime \top}$

$$
\left(\sum_{i=1}^{n} \boldsymbol{x}_{i}^{\prime \top} \boldsymbol{x}_{i}^{\prime}\right) \sum_{j=1}^{n} \alpha_{j}^{(r)} \boldsymbol{x}_{j}^{\prime \top}=n \lambda^{(r)} \sum_{k=1}^{n} \alpha_{k}^{(r)} \boldsymbol{x}_{k}^{\prime \top}
$$

Reorder

$$
\left(\sum_{i} \boldsymbol{x}_{i}^{\prime \top}\right) \sum_{j} \stackrel{{ }_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}^{\prime \top}}{\text { scala }} \alpha_{j}^{(r)}=n \lambda^{(r)} \sum_{k} \boldsymbol{x}_{k}^{\prime \top} \alpha_{k}^{(r)}
$$

Multiply from the left with $\boldsymbol{x}_{l}^{\prime}$ (equation holds for each l)

$$
\left(\sum_{i} \boldsymbol{x}_{\boldsymbol{l}}^{\prime} \boldsymbol{x}_{\boldsymbol{i}}^{\prime \top}\right) \sum_{j} \boldsymbol{x}_{\boldsymbol{i}}^{\prime} \boldsymbol{x}_{\boldsymbol{j}}^{\prime \top} \alpha_{j}^{(r)}=n \lambda^{(r)} \sum_{k_{1}}^{\boldsymbol{x}_{\boldsymbol{l}}^{\prime} \boldsymbol{x}_{k}^{\prime \top}} \alpha_{k}^{(r)}
$$

Replace $\boldsymbol{x}_{i}{ }^{\prime} \boldsymbol{x}_{j}^{\prime \top}$ with the kernel function

$$
\sum_{i} K\left(x_{l}, x_{i}\right) \sum_{j} K\left(x_{i}, x_{j}\right) \alpha_{j}^{(r)}=n \lambda^{(r)} \sum_{k} K\left(x_{l}, x_{k}\right) \alpha_{k}^{(r)}
$$

Reorder

$$
\sum_{i} \sum_{j} K\left(x_{l}, x_{i}\right) K\left(x_{i}, x_{j}\right) \alpha_{j}^{(r)}=n \lambda^{(r)} \sum_{k} K\left(x_{l}, x_{k}\right) \alpha_{k}^{(r)}
$$

Solving $\alpha_{1}, \ldots, \alpha_{n}$

$$
\sum_{i} \sum_{j} K\left(x_{l}, x_{i}\right) K\left(x_{i}, x_{j}\right) \alpha_{j}^{(r)}=n \lambda^{(r)} \sum_{k} K\left(x_{l}, x_{k}\right) \alpha_{k}^{(r)}
$$

\square Replace $K\left(x_{i}, x_{j}\right)$ with a matrix K where $k_{i j}=K\left(x_{i}, x_{j}\right)$ (K is called a kernel matrix)

$$
\sum_{i} \sum_{j} k_{l i} k_{i j} \alpha_{j}^{(r)}=n \lambda^{(r)} \sum_{k} k_{l k} \alpha_{k}^{(r)}
$$

- For each l this gives one single equation with a linear combination of the variables $\alpha_{1}^{(r)}, \ldots, \alpha_{n}^{(r)}$

$$
\begin{aligned}
& \text { e.g. } l=2 K_{1}^{\top} \\
& K_{2}^{\top}
\end{aligned} \quad \begin{aligned}
K_{l} \rightarrow & {\left[\begin{array}{ccc}
k_{11} & k_{12} & \cdots \\
k_{21} & k_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{ccc}
k_{11}^{\downarrow} & k_{12}^{\downarrow} & \cdots \\
k_{21} & k_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{(r)} \\
\alpha_{2}^{(r)} \\
\vdots
\end{array}\right]=n \lambda^{(r)}\left[\begin{array}{ccc}
k_{11} & k_{12} & \ldots \\
k_{21} & k_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{(r)} \\
\alpha_{2}^{(r)} \\
\vdots
\end{array}\right] } \\
& \left(k_{21} k_{11}+k_{22} k_{21}+\cdots\right) \alpha_{1}^{(r)}+\left(k_{21} k_{12}+k_{22} k_{22}+\cdots\right) \alpha_{2}^{(r)}+\cdots \\
& =n \lambda^{(r)}\left(k_{21} \alpha_{1}^{(r)}+k_{21} \alpha_{2}^{(r)}+\cdots\right)
\end{aligned}
$$

Solving $\alpha_{1}, \ldots,{ }_{K_{1}^{\top}}, k_{K_{2}^{\top}}$

System of one equation
$K_{l} \rightarrow\left[\begin{array}{ccc}k_{11} & k_{12} & \ldots \\ k_{21} & k_{22} & \ldots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{ccc}\downarrow & \downarrow & \\ k_{11} & k_{12} & \ldots \\ k_{21} & k_{22} & \ldots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}\alpha_{1}^{(r)} \\ \alpha_{2}^{(r)} \\ \vdots\end{array}\right]=n \lambda^{(r)}\left[\begin{array}{ccc}k_{11} & k_{12} & \ldots \\ k_{21} & k_{22} & \ldots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}\alpha_{1}^{(r)} \\ \alpha_{2}^{(r)} \\ \vdots\end{array}\right]$
\square Repeat l for 1 to n
System of n equations

$$
\left[\begin{array}{ccc}
k_{11} & k_{12} & \ldots \\
k_{21} & k_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{ccc}
k_{11} & k_{12} & \ldots \\
k_{21} & k_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{(r)} \\
\alpha_{2}^{(r)} \\
\vdots
\end{array}\right]=n \lambda^{(r)}\left[\begin{array}{ccc}
k_{11} & k_{12} & \ldots \\
k_{21} & k_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{(r)} \\
\alpha_{2}^{(r)} \\
\vdots
\end{array}\right]
$$

- This in matrix notation is

$$
\boldsymbol{K}^{2} \boldsymbol{\alpha}^{(r)}=n \lambda^{(r)} \boldsymbol{K} \boldsymbol{\alpha}^{(r)}
$$

- Each $\boldsymbol{\alpha}^{(r)}$ that fulfills the equation gives us a eigenvector $\boldsymbol{u}^{(r)}$ of the covariance matrix M^{\prime} in terms of the data $\boldsymbol{x}_{i}^{\prime}$

Solving $\alpha_{1}, \ldots, \alpha_{n}$

\square Removing \boldsymbol{K} from both sides will only affect the $\boldsymbol{\alpha}^{(r)}$ with zero $\lambda^{(r)}$ (proof omitted), leaving the final form of the eigenvalue system

$$
\boldsymbol{K} \boldsymbol{\alpha}^{(r)}=n \lambda^{(r)} \boldsymbol{\alpha}^{(r)}
$$

\square Since $\|\boldsymbol{u}\|=1$, we require $n \lambda \boldsymbol{\alpha}_{\text {Proof later }}^{\top} \boldsymbol{\alpha}=1 \Rightarrow \boldsymbol{\alpha} \|^{2}=$ $1 / n \lambda \Rightarrow\|\alpha\|=\sqrt{1 / n \lambda}$
However, $\boldsymbol{\alpha}^{*}$ from the eigendecomposition of \boldsymbol{K} has unit length and eigenvalue $\lambda^{*}=n \lambda^{(r)}$
To correct for this, $\boldsymbol{\alpha}^{(r)}=\frac{\alpha^{*}}{\sqrt{n \lambda^{(r)}}}=\frac{\alpha^{*}}{\sqrt{n \lambda^{*} / n}}=\frac{\alpha^{*}}{\sqrt{\lambda^{*}}}$
\square Since $\lambda^{(r)}=\lambda^{*} / n$, the relative importance of the eigenvectors can be determined from λ^{*}

Proof for $\|\boldsymbol{u}\|=1 \Rightarrow n \lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha}=1$
\square Since $\|\boldsymbol{u}\|=1$

$$
\boldsymbol{u}^{\top} \boldsymbol{u}=1
$$

$$
\begin{aligned}
\left(\sum_{i} \alpha_{i} \boldsymbol{x}_{i}^{\prime \top}\right)^{\top}\left(\sum_{j} \alpha_{j} \boldsymbol{x}_{j}^{\prime \top}\right) & =1 \\
\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}^{\prime \top} & =1 \\
\sum_{i} \sum_{j} \alpha_{i} K_{i j} \alpha_{j} & =1
\end{aligned}
$$

\square Multiply α_{i} to $\sum_{j} K_{i j} \alpha_{j}=n \lambda \sum_{k} \alpha_{k}$ gives

$$
\begin{aligned}
n \lambda \sum_{i} \sum_{k} \alpha_{i} \alpha_{k} & =\sum_{i} \sum_{j} \alpha_{i} K_{i j} \alpha_{j} \\
n \lambda \sum_{i} \sum_{k} \alpha_{i} \alpha_{k} & =1 \\
n \lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} & =1
\end{aligned}
$$

Proof for $x^{\top} x u=x u x^{\top}$

$$
\begin{aligned}
\left(v^{\top} v\right) u & =\left(\begin{array}{ccc}
v_{1} v_{1} & \cdots & v_{1} v_{n} \\
\vdots & \ddots & \vdots \\
v_{n} v_{1} & \ldots & v_{n} v_{n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
v_{1} v_{1} u_{1}+\cdots+v_{1} v_{n} u_{n} \\
\vdots \\
v_{n} v_{1} u_{1}+\cdots+v_{n} v_{n} u_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\left(v_{1} u_{1}+\cdots+v_{n} u_{n}\right) v_{1} \\
\vdots \\
\left(v_{1} u_{1}+\cdots+v_{n} u_{n}\right) v_{n}
\end{array}\right) \\
& =\left(v_{1} u_{1}+\cdots+v_{n} u_{n}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
\end{aligned}
$$

Projection of $\phi(x)$ on u

\square Given a point y, the projection of $\phi(y)$ on the eigenvector $u^{(r)}$ of M^{\prime} can be computed using $\boldsymbol{\alpha}^{(r)}$ as

$$
\begin{aligned}
\phi(y) u^{(r)} & =\sum_{i=1}^{n} \alpha_{i}^{(r)} \phi(y)^{\top} x_{i}^{\prime} \\
& =\sum_{i} \alpha_{i}^{(r)} K\left(y, x_{i}\right)
\end{aligned}
$$

\square This allows the principal components to be used for clustering existing datapoints as well as classifying out-of-sample datapoints into the clusters

Normalizing M^{\prime}

$\square \quad X^{\prime}$ has been assumed to be normalized so far
\square To normalize a matrix X^{\prime}, subtract every column with the mean of the column:

$$
x^{*}=x^{\prime}-\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime}
$$

\square The corresponding kernel,

$$
\begin{aligned}
K^{*}\left(x_{i}, x_{j}\right)=x_{i}^{*} x_{j}^{*}= & \left(x^{\prime}-\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime}\right)\left(x^{\prime}-\frac{1}{n} \sum_{i=1}^{n} x_{i}^{\prime}\right) \\
= & K\left(x_{i}, x_{j}\right)-\frac{1}{n} \sum_{k=1}^{n} K\left(x_{i}, x_{k}\right) \\
& -\frac{1}{n} \sum_{k=1}^{n} K\left(x_{j}, x_{k}\right)+\frac{1}{n^{2}} \sum_{l, k=1}^{n} K\left(x_{l}, x_{k}\right)
\end{aligned}
$$

Or in matrix notation

$$
\boldsymbol{K}^{*}=\boldsymbol{K}-2 \mathbf{1}_{1 / n} \boldsymbol{K}+\mathbf{1}_{1 / n} \boldsymbol{K} \mathbf{1}_{1 / n}
$$

Kernel functions

\square A kernel function K implicitly defines a mapping ϕ from an input space to some feature space
\square Positive semi-definite functions are those that produce positive semi-definite kernel matrices

- Definition. A symmetric function K is called positive semi-definite over χ if and only if for every set of elements $x_{1}, \ldots, x_{n} \in \chi$, the matrix $K=\left(x_{i j}\right)$ where $x_{i j}=K\left(x_{i}, x_{j}\right)$ is positive semidefinite
\square Kernel functions must be positive semidefinite
- Theorem. A mapping ϕ exists for $K: \chi \rightarrow \mathcal{H}$ such that $K\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \Leftrightarrow K$ is a positive semidefinite symmetric matrix

Kernel functions

\square Properties
Symmetric $\quad K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)$
Cauchy-Schwarz $\left|K\left(x, x^{\prime}\right)\right| \leq \sqrt{K(x, x) K\left(x^{\prime}, x^{\prime}\right)}$ inequality

$$
\text { Definiteness } \quad K(x, x)=\|\phi(x)\|^{2} \geq 0
$$

\square Kernel property conservation

Sum
Product
Scaling
Polynomial combination
K, K^{\prime} are kernels $\Rightarrow K+K^{\prime}$ is kernel
K, K^{\prime} are kernels $\Rightarrow K K^{\prime}$ is kernel
K is kernel $\Rightarrow \alpha K$ is kernel for positive real α
K is kernel $\Rightarrow p(K)$ is kernel for polynomial p of degree m with positive coefficients

Kernel functions

- Common kernel functions

Linear
Cosine
Gaussian
Polynomial
Sigmoid
See http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications for a collection of uncommon kernel functions

