
© 2021. Ng Yen Kaow

Dimensionality Reduction
Part 1: PCA and KPCA
Ng Yen Kaow

© 2021. Ng Yen Kaow

Dimensionality Reduction
 Linear methods
 PCA (Principal Component Analysis)

 cMDS (Classical Multidimensional Scaling)

 Non-linear methods
 KPCA (Kernel PCA)

 mMDS (Metric MDS)

 Isomap
 LLE (Locally Linear Embedding)

 Laplacian Eigenmap
 t-SNE (t-distributed Stochastic Neighbor Embedding)

 UMAP (Uniform Manifold Approximation and Projection)

© 2021. Ng Yen Kaow

Principal Component Analysis
 Let 𝑋𝑋 be an 𝑛𝑛 × 𝑚𝑚 matrix where each row

represents a datapoint in an 𝑚𝑚-D space
 𝑋𝑋 is like a spreadsheet with features in

column and data cases in the rows

 We want to identify some form of “principal
directions” of 𝑋𝑋, where ideally
1. The directions should form a basis
2. The directions should be orthogonal
3. The first direction should account for

the most variation, the second direction
accounts for the most variation after
removing the first, and so on

© 2021. Ng Yen Kaow

Principal Component Analysis
 Assume datapoints in 𝑋𝑋 are generated by a

random vector 𝑿𝑿 = 𝒗𝒗1, … ,𝒗𝒗𝑚𝑚 , where each
𝒗𝒗𝑖𝑖 is a random variable
 Covariance cov 𝒗𝒗𝑖𝑖 ,𝒗𝒗𝑗𝑗 = 𝔼𝔼 𝒗𝒗𝑖𝑖 − 𝜇𝜇𝑖𝑖 𝒗𝒗𝑗𝑗 − 𝜇𝜇𝑗𝑗
 Define covariance matrix 𝑀𝑀 = 𝑚𝑚𝑖𝑖𝑗𝑗 of 𝑿𝑿

where 𝑚𝑚𝑖𝑖𝑗𝑗 = cov 𝒗𝒗𝑖𝑖 ,𝒗𝒗𝑗𝑗
(𝑀𝑀 can be estimated from 𝑋𝑋 = (𝑥𝑥𝑖𝑖𝑗𝑗) as the outer
product 𝑋𝑋𝑐𝑐⊤𝑋𝑋𝑐𝑐/𝑛𝑛 of a centered matrix 𝑋𝑋𝑐𝑐 = (𝑥𝑥𝑖𝑖𝑗𝑗𝑐𝑐)
where 𝑥𝑥𝑖𝑖𝑗𝑗𝑐𝑐 = 𝑥𝑥𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖)

 For the first principal direction, we want to
find unit vector 𝑢𝑢 ∈ ℝ𝑚𝑚 such that variance
var 𝑢𝑢⊤𝑿𝑿 is maximized

© 2021. Ng Yen Kaow

Principal Component Analysis
 The eigenvector 𝑢𝑢 of the covariance matrix
𝑀𝑀 of 𝑿𝑿 with the largest eigenvalue
maximizes var 𝑢𝑢⊤𝑿𝑿
Let 𝑿𝑿 ∈ ℝ𝑚𝑚 be a random vector with
 mean vector 𝜇𝜇 ∈ ℝ𝑚𝑚 and
 covariance matrix 𝑀𝑀 = 𝔼𝔼 𝑿𝑿 − 𝜇𝜇 𝑿𝑿 − 𝜇𝜇 ⊤

For any 𝑢𝑢 ∈ ℝ𝑛𝑛, the projection of 𝑢𝑢⊤𝑿𝑿 has
 𝔼𝔼 𝑢𝑢⊤𝑿𝑿 = 𝑢𝑢⊤𝜇𝜇 and
 var 𝑢𝑢⊤𝑿𝑿 = 𝔼𝔼 𝑢𝑢⊤𝑿𝑿 − 𝑢𝑢⊤𝜇𝜇 2

= 𝔼𝔼 𝑢𝑢⊤ 𝑿𝑿 − 𝜇𝜇 𝑿𝑿 − 𝜇𝜇 ⊤𝑢𝑢 = 𝑢𝑢⊤𝑀𝑀𝑢𝑢
From min-max theorem, 𝑢𝑢⊤𝑀𝑀𝑢𝑢 is maximized when 𝑢𝑢 is
the eigenvector of 𝑀𝑀 with the largest eigenvalue

Gives a matrix
since 𝑿𝑿 and 𝜇𝜇 are
column vectors

© 2021. Ng Yen Kaow

Principal Component Analysis
 Extend to 𝑘𝑘 principal directions, we want
 𝑘𝑘-D subspace of 𝑿𝑿 that is defined by

orthogonal basis 𝑝𝑝1, … , 𝑝𝑝𝑘𝑘 ∈ ℝ𝑚𝑚 and
displacement 𝑝𝑝0 ∈ ℝ𝑚𝑚

 Distance from 𝑿𝑿 to this subspace is minimized

 Projection of 𝑿𝑿 onto subspace is 𝑃𝑃⊤𝑿𝑿 + p𝟎𝟎, where 𝑃𝑃 is matrix
whose rows are 𝑝𝑝1, … ,𝑝𝑝𝑘𝑘

 Squared distance to subspace is 𝔼𝔼 𝑿𝑿 − 𝑃𝑃⊤𝑿𝑿 + 𝑝𝑝𝟎𝟎 2

 By calculus, p𝟎𝟎 = 𝔼𝔼 𝑿𝑿 − 𝑃𝑃⊤𝑿𝑿 = 1 − 𝑃𝑃⊤ 𝜇𝜇, hence
𝔼𝔼 𝑿𝑿 − 𝑃𝑃⊤𝑿𝑿 + 𝑝𝑝𝟎𝟎 2 = 𝔼𝔼 𝑿𝑿 − 𝜇𝜇 2 −𝔼𝔼 𝑃𝑃⊤ 𝑿𝑿 − 𝜇𝜇 2

 To maximize that, need to maximize 𝔼𝔼 𝑃𝑃⊤ 𝑿𝑿 − 𝜇𝜇 2 = var 𝑃𝑃⊤𝑿𝑿
 Finally, same as in previous slide, 𝑝𝑝1, … ,𝑝𝑝𝑘𝑘 are eigenvectors of 𝑀𝑀

© 2021. Ng Yen Kaow

Principal Component Analysis
 As mentioned, given a centered matrix
𝑋𝑋𝑐𝑐 = (𝑥𝑥𝑖𝑖𝑗𝑗𝑐𝑐) where 𝑥𝑥𝑖𝑖𝑗𝑗𝑐𝑐 = 𝑥𝑥𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖, an
unbiased estimator of 𝑀𝑀 can be obtained
as

𝑀𝑀 = 1
𝑛𝑛
𝑋𝑋c⊤𝑋𝑋𝑐𝑐 (or 𝑀𝑀 = 1

𝑛𝑛
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑐𝑐

⊤𝑥𝑥𝑖𝑖𝑐𝑐)

 This implies that 𝑀𝑀 is positive semi-definite

 Since SVD of 𝑋𝑋 eigendecomposes 𝑋𝑋c⊤𝑋𝑋𝑐𝑐

 We can solve PCA through either
1. Eigendecompose 𝑀𝑀, or
2. Solve SVD for 𝑋𝑋𝑐𝑐

© 2021. Ng Yen Kaow

Advantages of PCA with SVD
 SVD of matrix 𝑋𝑋𝑐𝑐 performs a eigen-

decomposition of 𝑋𝑋c⊤𝑋𝑋𝑐𝑐
 No need to compute 𝑋𝑋c⊤𝑋𝑋𝑐𝑐

 Given SVD of 𝑋𝑋𝑐𝑐 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤,
 𝑉𝑉 is the eigenvectors of 𝑋𝑋c⊤𝑋𝑋𝑐𝑐

 𝑈𝑈2 is the eigenvalues of 𝑋𝑋c⊤𝑋𝑋𝑐𝑐

 Since 𝑋𝑋𝑐𝑐𝑉𝑉 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤𝑉𝑉 = 𝑈𝑈𝑈𝑈
⇒ 𝑈𝑈𝑈𝑈 gives the projection of 𝑋𝑋𝑐𝑐 on

the principal directions 𝑉𝑉 (called
principal component scores)

© 2021. Ng Yen Kaow

Kernel PCA motivation
 Datapoints that do not lie on a linear

manifold in the coordinate space may lie on
one after some non-linear feature map 𝜙𝜙 to
a high dimensional space

 Principal components in the 𝜙𝜙-mapped
feature space may be more meaningful

Scholkopf, Smola, and Muller. Kernel Principal Component Analysis, 1999

© 2021. Ng Yen Kaow

Kernel PCA idea
 Steps to get the principal components in a 𝜙𝜙-

mapped feature space:
1. 𝑥𝑥′ = 𝜙𝜙 𝑥𝑥 and 𝑋𝑋𝑋 = 𝑥𝑥1𝑋 … 𝑥𝑥𝑛𝑛𝑋 ⊤

2. Center 𝑋𝑋𝑋 (deduct column mean)
3. Find covariance matrix, 𝑀𝑀′ = 1

𝑛𝑛
∑𝑖𝑖 𝑥𝑥𝑖𝑖′⊤𝑥𝑥𝑖𝑖′

4. Eigendecompose 𝑀𝑀′

 Difficult since dimension of 𝑥𝑥𝑋, dim(𝑥𝑥𝑋) will
be large (or even ∞)
⇒ 𝑀𝑀𝑋 has large (or even ∞) dimensions
⇒ Eigendecomposition of 𝑀𝑀𝑋 gives large

(or infinite) number of eigenvectors,
each of large (or infinite) dimensions

© 2021. Ng Yen Kaow

Kernel PCA idea
Problem 1: Large number of eigenvectors
 How many eigenvectors are there actually
 rank(𝑀𝑀′), bounded by the number of

datapoints
 Recall that eigenvectors can be expressed as a

linear combination of the datapoints by solving the
equations 𝑥𝑥𝑖𝑖′ = ∑𝑗𝑗 𝑥𝑥𝑖𝑖′,𝑢𝑢𝑗𝑗 𝑢𝑢𝑗𝑗
 𝑗𝑗 is bounded by rank 𝑀𝑀′ ⇒may be manageable
 However, working with the system of equations

is hard because 𝑥𝑥𝑖𝑖𝑋 and 𝑢𝑢𝑗𝑗 are of…

Problem 2: Large (or ∞) dimensions

© 2021. Ng Yen Kaow

Kernel method
 Do not compute 𝜙𝜙 𝑥𝑥1 , … ,𝜙𝜙(𝑥𝑥𝑛𝑛) or eigenvectors

of 𝑀𝑀𝑋
 Allow only comparisons between datapoints in

mapped space through inner product 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑗𝑗′
 Sufficient for writing eigenvector 𝑢𝑢 of 𝑀𝑀′ in terms of

𝜙𝜙 𝑥𝑥1 , … ,𝜙𝜙 𝑥𝑥𝑛𝑛 (i.e. project 𝑢𝑢 onto 𝜙𝜙 𝑥𝑥1 , … ,𝜙𝜙 𝑥𝑥𝑛𝑛)
 Sufficient for finding the eigenvalues of 𝑀𝑀𝑋
 Given point 𝑥𝑥, sufficient for finding the projection of

𝜙𝜙(𝑥𝑥) on the eigenvectors of 𝑀𝑀𝑋

 Use a function 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 (called a kernel
function) that does not require computing 𝜙𝜙 to
compute 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑗𝑗′
 Conditions for such a function given in later slides

© 2021. Ng Yen Kaow

Project eigenvector to 𝑥𝑥1′ , . . , 𝑥𝑥𝑛𝑛′
 Relate eigenvectors of 𝑀𝑀𝑋 with 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ using a

computation that involves only 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑗𝑗′

 Start with the definition of 𝑀𝑀′ = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖′⊤𝑥𝑥𝑖𝑖𝑋

 Solving 𝑀𝑀′𝑢𝑢 = 𝜆𝜆𝑢𝑢 means ∑𝑖𝑖 𝑥𝑥𝑖𝑖′⊤𝑥𝑥𝑖𝑖𝑋 𝑢𝑢 = 𝑛𝑛𝜆𝜆𝑢𝑢

 This implies 𝑢𝑢 = 1
𝑛𝑛𝑛𝑛
∑𝑖𝑖 𝑥𝑥𝑖𝑖′⊤𝑥𝑥𝑖𝑖′𝑢𝑢. Since

𝑥𝑥⊤𝑥𝑥𝑢𝑢 = 𝑥𝑥𝑢𝑢𝑥𝑥⊤, 𝑢𝑢 = 1
𝑛𝑛𝑛𝑛
∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑋𝑢𝑢𝑥𝑥𝑖𝑖′⊤

Hence can let 𝑢𝑢 = ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖′⊤ for 𝛼𝛼𝑖𝑖 ∈ ℝ
 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 project eigenvector 𝑢𝑢 to 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′

 Place 𝑢𝑢(𝑟𝑟) = ∑𝑖𝑖 𝛼𝛼𝑖𝑖
(𝑟𝑟)𝑥𝑥𝑖𝑖′⊤ back in ∑𝑖𝑖 𝑥𝑥𝑖𝑖′⊤𝑥𝑥𝑖𝑖𝑋 𝑢𝑢 = 𝑛𝑛𝜆𝜆𝑢𝑢

 Use superscript 𝑟𝑟 to associate 𝛼𝛼 with its corresponding 𝑢𝑢 and 𝜆𝜆

scalarProof later

© 2021. Ng Yen Kaow

Solving 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝒙𝒙𝑖𝑖′

⊤𝒙𝒙𝑖𝑖𝑋 𝒖𝒖(𝑟𝑟) = 𝑛𝑛𝜆𝜆(𝑟𝑟)𝒖𝒖(𝑟𝑟)

Replace 𝒖𝒖(𝑟𝑟) with ∑𝑗𝑗 𝛼𝛼𝑗𝑗
𝑟𝑟 𝒙𝒙𝑗𝑗′⊤

∑𝑖𝑖=1𝑛𝑛 𝒙𝒙𝑖𝑖′
⊤𝒙𝒙𝑖𝑖𝑋 ∑𝑗𝑗=1𝑛𝑛 𝛼𝛼𝑗𝑗

𝑟𝑟 𝒙𝒙𝑗𝑗′⊤ = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘=1𝑛𝑛 𝛼𝛼𝑘𝑘
𝑟𝑟 𝒙𝒙𝑘𝑘′⊤

Reorder

∑𝑖𝑖 𝒙𝒙𝑖𝑖′
⊤ ∑𝑗𝑗 𝒙𝒙𝑖𝑖𝑋𝒙𝒙𝑗𝑗′⊤𝛼𝛼𝑗𝑗

𝑟𝑟 = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘 𝒙𝒙𝑘𝑘′⊤𝛼𝛼𝑘𝑘
𝑟𝑟

Multiply from the left with 𝒙𝒙𝑙𝑙′ (equation holds for each 𝑙𝑙)

∑𝑖𝑖 𝒙𝒙𝑙𝑙′𝒙𝒙𝑖𝑖′
⊤ ∑𝑗𝑗 𝒙𝒙𝑖𝑖𝑋𝒙𝒙𝑗𝑗′⊤ 𝛼𝛼𝑗𝑗

𝑟𝑟 = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘 𝒙𝒙𝑙𝑙′𝒙𝒙𝑘𝑘′⊤ 𝛼𝛼𝑘𝑘
𝑟𝑟

Replace 𝒙𝒙𝑖𝑖𝑋𝒙𝒙𝑗𝑗′⊤ with the kernel function

∑𝑖𝑖 𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑖𝑖 ∑𝑗𝑗 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 𝛼𝛼𝑗𝑗
𝑟𝑟 = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑘𝑘 𝛼𝛼𝑘𝑘

𝑟𝑟

Reorder

∑𝑖𝑖 ∑𝑗𝑗 𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑖𝑖 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 𝛼𝛼𝑗𝑗
𝑟𝑟 = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑘𝑘 𝛼𝛼𝑘𝑘

𝑟𝑟

System of dim(𝑢𝑢) equations

System of one equation

scalar

scalar

scalar

(Terms in bold cannot be reordered)

© 2021. Ng Yen Kaow

Solving 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛
∑𝑖𝑖 ∑𝑗𝑗 𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑖𝑖 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 𝛼𝛼𝑗𝑗

𝑟𝑟 = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑘𝑘 𝛼𝛼𝑘𝑘
𝑟𝑟

 Replace 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 with a matrix 𝑲𝑲where 𝑘𝑘𝑖𝑖𝑗𝑗 = 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
(𝑲𝑲 is called a kernel matrix)

∑𝑖𝑖 ∑𝑗𝑗 𝑘𝑘𝑙𝑙𝑖𝑖𝑘𝑘𝑖𝑖𝑗𝑗 𝛼𝛼𝑗𝑗
𝑟𝑟 = 𝑛𝑛𝜆𝜆(𝑟𝑟) ∑𝑘𝑘 𝑘𝑘𝑙𝑙𝑘𝑘 𝛼𝛼𝑘𝑘

𝑟𝑟

 For each 𝑙𝑙 this gives one single equation with a linear
combination of the variables 𝛼𝛼1

𝑟𝑟 , … ,𝛼𝛼𝑛𝑛
𝑟𝑟

 e.g. 𝑙𝑙 = 2

𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝛼𝛼1
(𝑟𝑟)

𝛼𝛼2
(𝑟𝑟)

⋮

= 𝑛𝑛𝜆𝜆(𝑟𝑟)
𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝛼𝛼1
(𝑟𝑟)

𝛼𝛼2
(𝑟𝑟)

⋮
𝑘𝑘21𝑘𝑘11 + 𝑘𝑘22𝑘𝑘21 + ⋯ 𝛼𝛼1

𝑟𝑟 + 𝑘𝑘21𝑘𝑘12 + 𝑘𝑘22𝑘𝑘22 + ⋯ 𝛼𝛼2
𝑟𝑟 + ⋯

= 𝑛𝑛𝜆𝜆 𝑟𝑟 𝑘𝑘21𝛼𝛼1
(𝑟𝑟) + 𝑘𝑘21𝛼𝛼2

(𝑟𝑟) + ⋯

𝐾𝐾𝑙𝑙 →

𝐾𝐾1⊤
↓

𝐾𝐾2⊤
↓

© 2021. Ng Yen Kaow

Solving 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛
𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝛼𝛼1
(𝑟𝑟)

𝛼𝛼2
(𝑟𝑟)

⋮

= 𝑛𝑛𝜆𝜆(𝑟𝑟)
𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝛼𝛼1
(𝑟𝑟)

𝛼𝛼2
(𝑟𝑟)

⋮

 Repeat 𝑙𝑙 for 1 to 𝑛𝑛
𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝛼𝛼1
(𝑟𝑟)

𝛼𝛼2
(𝑟𝑟)

⋮

= 𝑛𝑛𝜆𝜆(𝑟𝑟)
𝑘𝑘11 𝑘𝑘12 …
𝑘𝑘21 𝑘𝑘22 …
⋮ ⋮ ⋱

𝛼𝛼1
(𝑟𝑟)

𝛼𝛼2
(𝑟𝑟)

⋮

 This in matrix notation is
𝑲𝑲2𝜶𝜶(𝑟𝑟) = 𝑛𝑛𝜆𝜆(𝑟𝑟)𝑲𝑲𝜶𝜶(𝑟𝑟)

 Each 𝜶𝜶(𝑟𝑟) that fulfills the equation gives us a
eigenvector 𝒖𝒖(𝑟𝑟) of the covariance matrix 𝑀𝑀𝑋 in
terms of the data 𝒙𝒙𝑖𝑖′

𝐾𝐾𝑙𝑙 →

𝐾𝐾1⊤
↓

𝐾𝐾2⊤
↓

System of 𝑛𝑛 equations

System of one equation

© 2021. Ng Yen Kaow

Solving 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛
 Removing 𝑲𝑲 from both sides will only affect the

𝜶𝜶(𝑟𝑟) with zero 𝜆𝜆(𝑟𝑟) (proof omitted), leaving the
final form of the eigenvalue system

𝑲𝑲𝜶𝜶(𝑟𝑟) = 𝑛𝑛𝜆𝜆(𝑟𝑟)𝜶𝜶(𝑟𝑟)

 Since 𝒖𝒖 = 1, we require 𝑛𝑛𝜆𝜆𝜶𝜶⊤𝜶𝜶 = 1 ⇒ 𝜶𝜶 2 =
1/𝑛𝑛𝜆𝜆 ⇒ 𝜶𝜶 = 1/𝑛𝑛𝜆𝜆

However, 𝜶𝜶∗ from the eigendecomposition of 𝑲𝑲
has unit length and eigenvalue 𝜆𝜆∗ = 𝑛𝑛𝜆𝜆(𝑟𝑟)

To correct for this, 𝜶𝜶(𝑟𝑟) = 𝜶𝜶∗

𝑛𝑛𝑛𝑛 𝑟𝑟
= 𝜶𝜶∗

𝑛𝑛𝑛𝑛∗/𝑛𝑛
= 𝜶𝜶∗

𝑛𝑛∗

 Since 𝜆𝜆(𝑟𝑟) = 𝜆𝜆∗/𝑛𝑛, the relative importance of the
eigenvectors can be determined from 𝜆𝜆∗

Proof later

© 2021. Ng Yen Kaow

Proof for 𝒖𝒖 = 1 ⇒ 𝑛𝑛𝜆𝜆𝜶𝜶⊤𝜶𝜶 = 1
 Since 𝒖𝒖 = 1

𝒖𝒖⊤𝒖𝒖 = 1
∑𝑖𝑖 𝛼𝛼𝑖𝑖𝒙𝒙𝑖𝑖′⊤

⊤ ∑𝑗𝑗 𝛼𝛼𝑗𝑗𝒙𝒙𝑗𝑗′⊤ = 1
∑𝑖𝑖 ∑𝑗𝑗 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗 𝒙𝒙𝑖𝑖′𝒙𝒙𝑗𝑗′⊤ = 1
∑𝑖𝑖 ∑𝑗𝑗 𝛼𝛼𝑖𝑖 𝐾𝐾𝑖𝑖𝑗𝑗𝛼𝛼𝑗𝑗 = 1

 Multiply 𝛼𝛼𝑖𝑖 to ∑𝑗𝑗 𝐾𝐾𝑖𝑖𝑗𝑗 𝛼𝛼𝑗𝑗 = 𝑛𝑛𝜆𝜆∑𝑘𝑘 𝛼𝛼𝑘𝑘 gives
𝑛𝑛𝜆𝜆∑𝑖𝑖 ∑𝑘𝑘 𝛼𝛼𝑖𝑖𝛼𝛼𝑘𝑘 = ∑𝑖𝑖 ∑𝑗𝑗 𝛼𝛼𝑖𝑖𝐾𝐾𝑖𝑖𝑗𝑗 𝛼𝛼𝑗𝑗
𝑛𝑛𝜆𝜆 ∑𝑖𝑖 ∑𝑘𝑘 𝛼𝛼𝑖𝑖𝛼𝛼𝑘𝑘 = 1

𝑛𝑛𝜆𝜆𝜶𝜶⊤𝜶𝜶 = 1

© 2021. Ng Yen Kaow

Proof for 𝑥𝑥⊤𝑥𝑥𝑢𝑢 = 𝑥𝑥𝑢𝑢𝑥𝑥⊤

𝑣𝑣⊤𝑣𝑣 𝑢𝑢 =
𝑣𝑣1𝑣𝑣1 … 𝑣𝑣1𝑣𝑣𝑛𝑛
⋮ ⋱ ⋮

𝑣𝑣𝑛𝑛𝑣𝑣1 … 𝑣𝑣𝑛𝑛𝑣𝑣𝑛𝑛

𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛

=
𝑣𝑣1𝑣𝑣1𝑢𝑢1 + ⋯+ 𝑣𝑣1𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛

⋮
𝑣𝑣𝑛𝑛𝑣𝑣1𝑢𝑢1 + ⋯+ 𝑣𝑣𝑛𝑛𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛

=
𝑣𝑣1𝑢𝑢1 + ⋯+ 𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛 𝑣𝑣1

⋮
𝑣𝑣1𝑢𝑢1 + ⋯+ 𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛 𝑣𝑣𝑛𝑛

= 𝑣𝑣1𝑢𝑢1 + ⋯+ 𝑣𝑣𝑛𝑛𝑢𝑢𝑛𝑛
𝑣𝑣1
⋮
𝑣𝑣𝑛𝑛

© 2021. Ng Yen Kaow

Projection of 𝜙𝜙(𝑥𝑥) on 𝑢𝑢
 Given a point 𝑦𝑦, the projection of 𝜙𝜙(𝑦𝑦) on

the eigenvector 𝑢𝑢(𝑟𝑟) of 𝑀𝑀𝑋 can be
computed using 𝜶𝜶(𝑟𝑟) as

𝜙𝜙 𝑦𝑦 𝑢𝑢(𝑟𝑟) = ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖
(𝑟𝑟)𝜙𝜙(𝑦𝑦)⊤ 𝑥𝑥𝑖𝑖′

= ∑𝑖𝑖 𝛼𝛼𝑖𝑖
𝑟𝑟 𝐾𝐾(𝑦𝑦, 𝑥𝑥𝑖𝑖)

 This allows the principal components to
be used for clustering existing datapoints
as well as classifying out-of-sample
datapoints into the clusters

© 2021. Ng Yen Kaow

Normalizing 𝑀𝑀𝑋
 𝑋𝑋𝑋 has been assumed to be normalized so far
 To normalize a matrix 𝑋𝑋′, subtract every column

with the mean of the column:

𝑥𝑥∗ = 𝑥𝑥′ − 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖′

 The corresponding kernel,
𝐾𝐾∗ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑖𝑖∗𝑥𝑥𝑗𝑗∗ = 𝑥𝑥′ − 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖′ 𝑥𝑥′ − 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖′

= 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 − 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘

− 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 𝐾𝐾 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘 + 1

𝑛𝑛2
∑𝑙𝑙,𝑘𝑘=1𝑛𝑛 𝐾𝐾 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑘𝑘

Or in matrix notation
𝑲𝑲∗ = 𝑲𝑲− 2𝟏𝟏1/𝑛𝑛𝑲𝑲 + 𝟏𝟏1/𝑛𝑛𝑲𝑲𝟏𝟏1/𝑛𝑛

© 2021. Ng Yen Kaow

Kernel functions
 A kernel function 𝐾𝐾 implicitly defines a mapping

𝜙𝜙 from an input space to some feature space
 Positive semi-definite functions are those that

produce positive semi-definite kernel matrices
 Definition. A symmetric function 𝐾𝐾 is called positive

semi-definite over 𝜒𝜒 if and only if for every set of
elements 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 𝜒𝜒, the matrix 𝑲𝑲 = (𝑥𝑥𝑖𝑖𝑗𝑗) where
𝑥𝑥𝑖𝑖𝑗𝑗 = 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) is positive semidefinite

 Kernel functions must be positive semi-
definite
 Theorem. A mapping 𝜙𝜙 exists for 𝐾𝐾:𝜒𝜒 → ℋ such

that 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = 𝜙𝜙 𝑥𝑥 ,𝜙𝜙 𝑥𝑥𝑋 ⟺ 𝐾𝐾 is a positive semi-
definite symmetric matrix

Hilbert space (ignore for now)

© 2021. Ng Yen Kaow

Kernel functions
 Properties

 Kernel property conservation

Symmetric 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = 𝐾𝐾 𝑥𝑥′, 𝑥𝑥
Cauchy-Schwarz
inequality

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) ≤ 𝐾𝐾 𝑥𝑥, 𝑥𝑥 𝐾𝐾(𝑥𝑥′, 𝑥𝑥′)

Definiteness 𝐾𝐾 𝑥𝑥, 𝑥𝑥 = 𝜙𝜙 𝑥𝑥 2 ≥ 0

Sum 𝐾𝐾, 𝐾𝐾𝑋 are kernels ⇒ 𝐾𝐾 + 𝐾𝐾’ is kernel
Product 𝐾𝐾, 𝐾𝐾𝑋 are kernels ⇒ 𝐾𝐾𝐾𝐾𝑋 is kernel
Scaling 𝐾𝐾 is kernel ⇒ 𝛼𝛼𝐾𝐾 is kernel for positive real 𝛼𝛼
Polynomial
combination

𝐾𝐾 is kernel ⇒ 𝑝𝑝(𝐾𝐾) is kernel for polynomial 𝑝𝑝
of degree 𝑚𝑚 with positive coefficients

© 2021. Ng Yen Kaow

Kernel functions
 Common kernel functions

See http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications for a
collection of uncommon kernel functions

Linear 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = 𝑥𝑥𝑥𝑥′⊤

Cosine 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = 𝑥𝑥𝑥𝑥′⊤/ 𝑥𝑥 𝑥𝑥𝑋

Gaussian 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = exp(−𝛾𝛾 𝑥𝑥 − 𝑥𝑥′ 2)

Polynomial 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = 𝛾𝛾𝑥𝑥𝑥𝑥′⊤ + 𝑐𝑐 𝑑𝑑 for 𝛾𝛾, 𝑐𝑐 ∈ ℝ+,𝑑𝑑 ∈ ℕ+

Sigmoid 𝐾𝐾 𝑥𝑥, 𝑥𝑥′ = tanh 𝛾𝛾𝑥𝑥𝑥𝑥′⊤ + 𝑐𝑐 for 𝛾𝛾, 𝑐𝑐 ∈ ℝ+

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications

	Dimensionality Reduction Part 1: PCA and KPCA
	Dimensionality Reduction
	Principal Component Analysis
	Principal Component Analysis
	Principal Component Analysis
	Principal Component Analysis
	Principal Component Analysis
	Advantages of PCA with SVD
	Kernel PCA motivation
	Kernel PCA idea
	Kernel PCA idea
	Kernel method
	Project eigenvector to 𝑥 1 ′ ,.., 𝑥 𝑛 ′
	Solving 𝛼 1 ,…, 𝛼 𝑛
	Solving 𝛼 1 ,…, 𝛼 𝑛
	Solving 𝛼 1 ,…, 𝛼 𝑛
	Solving 𝛼 1 ,…, 𝛼 𝑛
	Proof for 𝒖 =1⇒𝑛𝜆 𝜶 ⊤ 𝜶=1
	Proof for 𝑥 ⊤ 𝑥𝑢=𝑥𝑢 𝑥 ⊤
	Projection of 𝜙(𝑥) on 𝑢
	Normalizing 𝑀′
	Kernel functions
	Kernel functions
	Kernel functions

