Just Enough
Spectral Theory
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Notations (Important)

0 A vector Is by default a column
For vectors x and vy, their inner (or dot)
product, (x,y) = x"y
0 x+zy)=@&y)+Hzy)=x"y+zTy
Beware: some texts use row vectors and (x,y) = xy '

1 For a matrix an example is a row

An example (or datapoint) is a row x; while
each feature Is a columns
o Features are like fixed columns in a spreadsheet

For matrices X and Y, (X,Y) = XY or Zi(xi)’iT)

Beware: some texts use column for examples and let (X,Y) = XY

0 Soit'sx'x, x"Mx, but XX and QAQ "

© 2021. Ng Yen Kaow



Outer product

o The outer product of two vectors x and y Is a
matrix M where the M;; = x;y;

. ;)¢ &= (5 5)

0 The outer product (or Kronecker product) of two

matrices Is a tensor
We don’t deal with tensors yet

0 Common uses of outer products
Denote pairwise inner product matrix,

X1X1 X1X

xx' = <x2x1 Xy Xy
1 ... 1
Denote matrix of all ones, 11T =|: - :
1 ... 1
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More notations

o Conventions
x; from a matrix is by default a row vector
x; from a vector is a scalar
x;; from a matrix Is a scalar

x, u; (all other vectors) are by default column

vectors
0 Common expansions
xy' = Y%y (XY)ij = Xk XikVkj
(x"y)i; = xy; (XY");; = xi)’jT = Dk XikYjk

x'My =Y mixy;  (X'Y)i; = X XiVkj
XTX =Y.x'x; (usedin kernel PCA)
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Python call for inner product
0 Inner products are performed with np.dot()

When called on two arrays, the arrays are

automatically oriented to perform inner product
o Notethat [[1].[1]]isa 1 Xx 2 matrix

When called on an array x and a matrix X, the array is
automatically read as a row for np.dot(x, X), and
column for np.dot (X, x) to perform inner product

When called on two matrices, make sure that the
matrices are oriented correctly, or you will get XX
when you want XX 7T

Impossible to get outer product with np.dot()

0 If you write x*y or X*Y, what you get is an
element-wise multiplication
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Eigenvectors and eigenvalues

0 Only concerned with square matrices
Most matrices we consider are

furthermore symmetric and of only real
values

0 A elgenvector for a square matrix M Is
vector u where Mu = Au

u IS Invariant under transformation M
The scaling factor A Is a eigenvalue

Use u to denote a column vector even when

multiple u; are collected into a matrix U =
Uy .. Ug]
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Mu = Au Is a system of equations

o An equation such as Mu = Au actually states n
linear equations, namely vi, ¥, m;u; = Au;
For example
(s ) (1) =42
Mmp1 Mpz/ \Up U
states the two equations
mqq U + mpu, = Auy
MmyUq + My, = AU,

o This Is important when manipulating equation
by multiplying with other matrix/vector

For example when Mu = Au is multiplied from the
left by u', the resultant u"Mu = Au"u becomes only
one equation, that is, Zl] Uuim;u;j = /121] U;U;j
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Eigendecomposition

0 A eigendecomposition of matrix M Is
M = QAQ™"
where A Is diagonal, and Q contains (not
necessarily orthogonal) eigenvectors of M

Any normal M can be eigendecomposed
The set of eigenvalues for M is unique

There can be different eigenvectors of the
same eigenvalue (hence not unique)

o For real symmetric M, eigenvectors that
correspond to distinct eigenvalues are
(chosen to be) orthogonal
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Orthogonal eigendecomposition

0 For real symmetric M, can choose Q to be
orthogonal matrix (proof omitted)

0 For square matrix @, the following are equivalent
(proof next slide)
1. Q@ Is an orthogonal matrix

2. 070 =1
3. 00" =1
Corollary. QTQ =1=0Q0'QQ ' =01

=>Q'=Q7"
0 By default the eigendecomposition of real
symmetric matrix M is M = QAQ'
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Orthogonal matrix property

0 For square matrix Q, the following are equivalent
1. Q is orthogonal matrix

2. Q'Q =1
3. Q0" =1
2<>1 Let u; be the column vectors of A
U4 T U U, e UqUYT
Q"0 =|:[[Uur . uUy]=1] : ' :
Uy | UpUy . UpUy)

'u1u1 ulun_
: ’ i | = Iimplies u;u; = 0 for i # j

_unul nEn unun_
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Eigenspace

0 The eigenspace of a matrix M Is the set of
all the vectors u that fulfills Mu = Au

The rank of M Is its number of non-zero A

0 A elgenbasis of an X n matrix M Is a set of
n orthogonal eigenvectors of M (including
those with zero eigenvalues)

Any datapoint x; in M can be written as a linear

combination of the eigenbasis, x; = ¥ {x;, u;) u;

Any eigenvector u; for M can be written as a linear
combination of the datapoints x;, by solving the

system of equations x; = ¥ ;{x;, u;) u;
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Rayleigh Quotient

O uuTu is called the Rayleigh quotient
0 LetAq,..., A, whered; =24, = ... 21, be

the eigenvalues of M
0 Min-max Theorem (simplified)
Maximum of the Rayleigh quotient,

u' Mu )
||r‘LrLl||a=X1 uTu 1
Minimum of the Rayleigh guotient,
u' Mu
min = Ay

lull=1 uTu

©2021. Ng Yen Kaow



Proof of min-max theorem

-
o Find stationary points of —=—

. 1 __ uMu . u' Tmu’
0 Letting u’ = cu does not change —— (— — )

Hence consider only unit u
Maximize u" Mu subjectto u'u =1

0 Use Lagrangian to add u"u = 1 constraint

— A, T T
L(u, 311): =u Mu+A(u'u—1) Matrix differentiation*
£=UT(M+MT)+2/1UT =0 a";V“‘sz(M+MT)
a_£ T4 oxTx = 25T
S - uu 1=0 dx

U M+M")==2u"=>M+M"Du=-2u
Since M is symmetric, 2ZMu = —2Au
= Mu = Au where 1 = =21
o Stationary points are solutions of Mu = Au
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Eigendecomposition applications

0 Matrix inverse
0 Matrix approximation

0 Matrix factorization
Multidimensional Scaling

0 Minimizing/maximizing Rayleigh Quotient
PCA
o Max of covariance matrix

Spectral clustering
o Min of graph Laplacian



Singular Value Decomposition

0 Any matrix can be singular value
decomposed

O M=USV"
M 1S m X n matrix

For unitary matrix

U 1s an m X m unitary matrix U UU* = U0 =1

S Is an m X n diagonal matrix
V Is an n X n unitary matrix

0 Forareal M, V*=VT (and U = U") hence
M=USVT
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SVD applications
Solving linear equations

Linear regression
Pseudoinverse
Kabsch algorithm
Matrix approximation

As a eigendecomposition (see
next slide)




SVD and eigendecomposition
0 SVD of matrix M simultaneously performs a
eigendecomposition of MM and MMT

M™M and MM " are important matrices (next
slide)

Given SVD of M = USV'T, since V and U are

unitary

o MTM=VSTuTusvT =v( STyt =vs4vT

0o MMT" =USVTVSTUT =U(STS)UT = US4U"

= V is the eigenbasis of M™M and U is the
eigenbasis of MM' respectively

= M™M and MM " have the same
eigenvalues, namely S?
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Special Matrices

Three types of matrices lead to many
results

Covariance (A" A for column centered A)
= Principal Component Analysis

Gramian (4AA" for column centered A)
= Multidimensional Scaling
— Kernel Method

Graph Laplacian (4AT for incidence
matrix A)
— Spectral Clustering

©2021. Ng Yen Kaow



	Just Enough �Spectral Theory
	Notations (Important)
	Outer product
	More notations
	Python call for inner product
	Eigenvectors and eigenvalues
	𝑀𝑢=𝜆𝑢 is a system of equations 
	Eigendecomposition
	Orthogonal eigendecomposition
	Orthogonal matrix property
	Eigenspace
	Rayleigh Quotient
	Proof of min-max theorem
	Eigendecomposition applications
	Singular Value Decomposition
	SVD applications
	SVD and eigendecomposition
	Special Matrices

