Just Enough Spectral Theory Ng Yen Kaow

© 2021. Ng Yen Kaow

Notations (Important)

- □ A vector is by default a column
 - For vectors x and y, their inner (or dot) product, $\langle x, y \rangle = x^{\top} y$

$$\Box \quad \langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle = x^{\mathsf{T}}y + z^{\mathsf{T}}y$$

Beware: some texts use row vectors and $\langle x, y \rangle = xy^{\top}$

□ For a matrix an example is a row

An example (or datapoint) is a row x_i while each feature is a columns

Features are like fixed columns in a spreadsheet

- For matrices X and Y, $\langle X, Y \rangle = XY^{\top}$ or $\sum_{i} (x_{i}y_{i}^{\top})$
- Beware: some texts use column for examples and let $\langle X, Y \rangle = X^{\top}Y$

□ So it's $x^{\top}x$, $x^{\top}Mx$, but XX^{\top} and $Q\Lambda Q^{\top}$

Outer product

- □ The outer product of two vectors *x* and *y* is a matrix *M* where the $M_{ij} = x_i y_j$ e.g. $\binom{a}{b}(c \ d) = \binom{ac \ ad}{bc \ bd}$
- The outer product (or Kronecker product) of two matrices is a tensor
 - We don't deal with tensors yet
- Common uses of outer products

$$xx^{\top} = \begin{pmatrix} x_1x_1 & x_1x_2 & \dots \\ x_2x_1 & x_2x_2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Denote matrix of all ones, $\mathbf{11}^{\top} = \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{bmatrix}$

More notations

- Conventions
 - x_i from a matrix is by default a row vector
 - x_i from a vector is a scalar
 - x_{ij} from a matrix is a scalar
 - x, u_i (all other vectors) are by default column vectors
- Common expansions

$$\begin{aligned} xy^{\top} &= \sum_{i} x_{i} y_{i} & (XY)_{ij} &= \sum_{k} x_{ik} y_{kj} \\ (x^{\top}y)_{ij} &= x_{i} y_{j} & (XY^{\top})_{ij} &= x_{i} y_{j}^{\top} &= \sum_{k} x_{ik} y_{jk} \\ x^{\top}My &= \sum_{ij} m_{ij} x_{i} y_{j} & (X^{\top}Y)_{ij} &= \sum_{k} x_{ki} y_{kj} \\ X^{\top}X &= \sum_{i} x_{i}^{\top} x_{i} & \text{(used in kernel PCA)} \end{aligned}$$

Python call for inner product

- □ Inner products are performed with np. dot()
 - When called on two arrays, the arrays are automatically oriented to perform inner product
 Note that [[1], [1]] is a 1 × 2 matrix
 - When called on an array x and a matrix X, the array is automatically read as a row for np. dot (x, X), and column for np. dot (X, x) to perform inner product
 - When called on two matrices, make sure that the matrices are oriented correctly, or you will get X^TX when you want XX^T
 - Impossible to get outer product with np. dot ()
- If you write x*y or X*Y, what you get is an element-wise multiplication

© 2021. Ng Yen Kaow

Eigenvectors and eigenvalues Only concerned with square matrices Most matrices we consider are furthermore symmetric and of only real values

- □ A eigenvector for a square matrix *M* is vector *u* where $Mu = \lambda u$
 - *u* is invariant under transformation *M*
 - The scaling factor λ is a eigenvalue
 - Use u to denote a column vector even when multiple u_i are collected into a matrix $U = [u_1 \ \dots \ u_k]$

$Mu = \lambda u$ is a system of equations

- □ An equation such as $Mu = \lambda u$ actually states *n* linear equations, namely $\forall i, \sum_j m_i u_j = \lambda u_i$
 - For example

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

states the two equations

 $m_{11}u_1 + m_{12}u_2 = \lambda u_1$ $m_{21}u_1 + m_{22}u_2 = \lambda u_2$

- This is important when manipulating equation by multiplying with other matrix/vector
 - For example when $Mu = \lambda u$ is multiplied from the left by u^{T} , the resultant $u^{\mathsf{T}}Mu = \lambda u^{\mathsf{T}}u$ becomes only one equation, that is, $\sum_{ij} u_i m_{ij} u_j = \lambda \sum_{ij} u_i u_j$

Eigendecomposition

□ A eigendecomposition of matrix *M* is $M = Q\Lambda Q^{-1}$

where Λ is diagonal, and Q contains (not necessarily orthogonal) eigenvectors of M

- Any normal *M* can be eigendecomposed
- The set of eigenvalues for M is unique
- There can be different eigenvectors of the same eigenvalue (hence not unique)
 - For real symmetric M, eigenvectors that correspond to distinct eigenvalues are (chosen to be) orthogonal

Orthogonal eigendecomposition

- □ For real symmetric *M*, can choose *Q* to be orthogonal matrix (proof omitted)
- □ For square matrix Q, the following are equivalent (proof next slide)
 - 1. *Q* is an orthogonal matrix
 - $2. \quad Q^{\top}Q = I$
 - 3. $QQ^{\top} = I$
 - Corollary. $Q^{\top}Q = I \Rightarrow Q^{\top}QQ^{-1} = Q^{-1}$

$$\Rightarrow Q^{\top} = Q^{-1}$$

■ By default the eigendecomposition of real symmetric matrix *M* is $M = Q\Lambda Q^{\top}$

Orthogonal matrix property

 \Box For square matrix Q, the following are equivalent

1. *Q* is orthogonal matrix

$$2. \quad Q^{\top}Q = I$$

3.
$$QQ^{\top} = I$$

2⇔1 Let u_i be the column vectors of A

$$Q^{\top}Q = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix} = \begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix}$$
$$\begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix} = I \text{ implies } u_iu_j = 0 \text{ for } i \neq j$$

Eigenspace

- □ The eigenspace of a matrix *M* is the set of all the vectors *u* that fulfills $Mu = \lambda u$
 - The rank of *M* is its number of non-zero λ
- □ A eigenbasis of a $n \times n$ matrix *M* is a set of *n* orthogonal eigenvectors of *M* (including those with zero eigenvalues)
 - Any datapoint x_i in M can be written as a linear combination of the eigenbasis, $x_i = \sum_j \langle x_i, u_j \rangle u_j$
 - Any eigenvector u_i for M can be written as a linear combination of the datapoints x_i , by solving the system of equations $x_i = \sum_j \langle x_i, u_j \rangle u_j$

Rayleigh Quotient

- $\Box \ \frac{u^{\top} M u}{u^{\top} u}$ is called the **Rayleigh quotient**
- □ Let $\lambda_1, ..., \lambda_n$ where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ be the eigenvalues of *M*
- □ **Min-max Theorem** (simplified)
 - Maximum of the Rayleigh quotient, $\max_{\|u\|=1} \frac{u^{\top} M u}{u^{\top} u} = \lambda_1$
 - Minimum of the Rayleigh quotient, $\min_{\|u\|=1} \frac{u^{\top} M u}{u^{\top} u} = \lambda_n$

Proof of min-max theorem

Find stationary points of $\frac{u^T M u}{u^T u}$

- □ Letting u' = cu does not change $\frac{u^T M u}{u^T u} \left(= \frac{u'^T M u'}{u'^T u'} \right)$
 - Hence consider only unit *u*
 - Maximize $u^{\top}Mu$ subject to $u^{\top}u = 1$
- □ Use Lagrangian to add $u^{\mathsf{T}}u = 1$ constraint $\mathcal{L}(u, \lambda) = u^{\mathsf{T}}Mu + \lambda(u^{\mathsf{T}}u - 1)$ Matrix differentiation* $\frac{\partial \mathcal{L}}{\partial u} = u^{\mathsf{T}}(M + M^{\mathsf{T}}) + 2\lambda u^{\mathsf{T}} = 0$ $\frac{\partial x^{\mathsf{T}}Mx}{\partial x} = x^{\mathsf{T}}(M + M^{\mathsf{T}})$ $\frac{\partial \mathcal{L}}{\partial \lambda} = u^{\mathsf{T}}u - 1 = 0$ $\frac{\partial x^{\mathsf{T}}x}{\partial x} = 2x^{\mathsf{T}}$ $u^{\mathsf{T}}(M + M^{\mathsf{T}}) = -2\lambda u^{\mathsf{T}} \Rightarrow (M + M^{\mathsf{T}})u = -2\lambda u$ Since *M* is symmetric, $2Mu = -2\lambda u$
 - $\Rightarrow Mu = \tilde{\lambda}u$ where $\tilde{\lambda} = -2\lambda$

Stationary points are solutions of $Mu = \tilde{\lambda}u$

Eigendecomposition applications

- Matrix inverse
- Matrix approximation
- Matrix factorization
 - Multidimensional Scaling
- Minimizing/maximizing Rayleigh Quotient
 - PCA
 - Max of covariance matrix
 - Spectral clustering
 - Min of graph Laplacian

Singular Value Decomposition

- Any matrix can be singular value decomposed
- $\Box M = USV^*$
 - *M* is $m \times n$ matrix
 - U is an $m \times m$ unitary matrix

For unitary matrix $U, UU^* = U^*U = I$

- S is an $m \times n$ diagonal matrix
- V is an $n \times n$ unitary matrix

□ For a real M, $V^* = V^{\top}$ (and $U = U^{\top}$) hence $M = USV^{\top}$

SVD applications Solving linear equations Linear regression

- Pseudoinverse
- Kabsch algorithm
- Matrix approximation
- As a eigendecomposition (see next slide)

SVD and eigendecomposition

- □ SVD of matrix *M* simultaneously performs a eigendecomposition of $M^{\top}M$ and MM^{\top}
 - $M^{\top}M$ and MM^{\top} are important matrices (next slide)
 - Given SVD of $M = USV^{T}$, since V and U are unitary
 - $\square \quad M^{\top}M = VS^{\top}U^{\top}USV^{\top} = V(S^{\top}S)V^{\top} = VS^{2}V^{\top}$
 - $\square MM^{\top} = USV^{\top}VS^{\top}U^{\top} = U(S^{\top}S)U^{\top} = US^{2}U^{\top}$
 - \Rightarrow V is the eigenbasis of $M^{\top}M$ and U is the eigenbasis of MM^{\top} respectively
 - $\Rightarrow M^{\top}M$ and MM^{\top} have the same eigenvalues, namely S^2

Special Matrices

- Three types of matrices lead to many results
 - Covariance $(A^{\top}A$ for column centered A) \Rightarrow Principal Component Analysis
 - Gramian (AA^{T} for column centered A)
 - \Rightarrow Multidimensional Scaling
 - \Rightarrow Kernel Method
 - Graph Laplacian (AA[⊤] for incidence matrix A)
 ⇒ Spectral Clustering