Just Enough Spectral Theory

Ng Yen Kaow

Notations (I mportant)

\square A vector is by default a column

- For vectors x and y, their inner (or dot) product, $\langle x, y\rangle=x^{\top} y$
$\square\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle=x^{\top} y+z^{\top} y$
- Beware: some texts use row vectors and $\langle x, y\rangle=x y^{\top}$
\square For a matrix an example is a row
- An example (or datapoint) is a row x_{i} while each feature is a columns
- Features are like fixed columns in a spreadsheet
- For matrices X and $Y,\langle X, Y\rangle=X Y^{\top}$ or $\sum_{i}\left(x_{i} y_{i}^{\top}\right)$
- Beware: some texts use column for examples and let $\langle X, Y\rangle=X^{\top} Y$
- So it's $x^{\top} x, x^{\top} M x$, but $X X^{\top}$ and $Q \Lambda Q^{\top}$

Outer product

\square The outer product of two vectors x and y is a matrix M where the $M_{i j}=x_{i} y_{j}$
e.g. $\binom{a}{b}\left(\begin{array}{ll}c & d\end{array}\right)=\left(\begin{array}{ll}a c & a d \\ b c & b d\end{array}\right)$
\square The outer product (or Kronecker product) of two matrices is a tensor

- We don't deal with tensors yet
\square Common uses of outer products
- Denote pairwise inner product matrix

$$
x x^{\top}=\left(\begin{array}{ccc}
x_{1} x_{1} & x_{1} x_{2} & \ldots \\
x_{2} x_{1} & x_{2} x_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

- Denote matrix of all ones, $\mathbf{1 1}^{\top}=\left[\begin{array}{ccc}1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1\end{array}\right]$

More notations

- Conventions
- x_{i} from a matrix is by default a row vector
- x_{i} from a vector is a scalar
- $x_{i j}$ from a matrix is a scalar
- x, u_{i} (all other vectors) are by default column vectors
\square Common expansions

$$
\begin{array}{ll}
x y^{\top}=\sum_{i} x_{i} y_{i} & (X Y)_{i j}=\sum_{k} x_{i k} y_{k j} \\
\left(x^{\top} y\right)_{i j}=x_{i} y_{j} & \left(X Y^{\top}\right)_{i j}=x_{i} y_{j}^{\top}=\sum_{k} x_{i k} y_{j k} \\
x^{\top} M y=\sum_{i j} m_{i j} x_{i} y_{j} & \left(X^{\top} Y\right)_{i j}=\sum_{k} x_{k i} y_{k j} \\
X^{\top} X=\sum_{i} x_{i}^{\top} x_{i} & \text { (used in kernel PCA) }
\end{array}
$$

Python call for inner product

\square Inner products are performed with np. dot ()

- When called on two arrays, the arrays are automatically oriented to perform inner product - Note that [[1], [1]] is a 1×2 matrix
- When called on an array x and a matrix X, the array is automatically read as a row for $n p$. dot (x, X), and column for np. dot (X, x) to perform inner product
- When called on two matrices, make sure that the matrices are oriented correctly, or you will get $X^{\mathrm{T}} X$ when you want $X X^{\mathrm{T}}$
- Impossible to get outer product with np. dot ()
\square If you write $x^{*} y$ or $X^{*} Y$, what you get is an element-wise multiplication

Eigenvectors and eigenvalues

\square Only concerned with square matrices

- Most matrices we consider are furthermore symmetric and of only real values
\square A eigenvector for a square matrix M is vector u where $M u=\lambda u$
- u is invariant under transformation M
- The scaling factor λ is a eigenvalue
- Use u to denote a column vector even when multiple u_{i} are collected into a matrix $U=$ $\left[\begin{array}{lll}u_{1} & \ldots & u_{k}\end{array}\right]$

$M u=\lambda u$ is a system of equations

- An equation such as $M u=\lambda u$ actually states n linear equations, namely $\forall i, \Sigma_{j} m_{i} u_{j}=\lambda u_{i}$
- For example

$$
\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{u_{1}}{u_{2}}=\lambda\binom{u_{1}}{u_{2}}
$$

states the two equations

$$
\begin{aligned}
& m_{11} u_{1}+m_{12} u_{2}=\lambda u_{1} \\
& m_{21} u_{1}+m_{22} u_{2}=\lambda u_{2}
\end{aligned}
$$

\square This is important when manipulating equation by multiplying with other matrix/vector

- For example when $M u=\lambda u$ is multiplied from the left by u^{\top}, the resultant $u^{\top} M u=\lambda u^{\top} u$ becomes only one equation, that is, $\sum_{i j} u_{i} m_{i j} u_{j}=\lambda \sum_{i j} u_{i} u_{j}$

Eigendecomposition

\square A eigendecomposition of matrix M is

$$
M=Q \Lambda Q^{-1}
$$

where Λ is diagonal, and Q contains (not necessarily orthogonal) eigenvectors of M

- Any normal M can be eigendecomposed
- The set of eigenvalues for M is unique
- There can be different eigenvectors of the same eigenvalue (hence not unique)
- For real symmetric M, eigenvectors that correspond to distinct eigenvalues are (chosen to be) orthogonal

Orthogonal eigendecomposition

- For real symmetric M, can choose Q to be orthogonal matrix (proof omitted)
\square For square matrix Q, the following are equivalent (proof next slide)

1. Q is an orthogonal matrix
2. $Q^{\top} Q=I$
3. $Q Q^{\top}=I$

- Corollary. $Q^{\top} Q=I \Rightarrow Q^{\top} Q Q^{-1}=Q^{-1}$

$$
\Rightarrow Q^{\top}=Q^{-1}
$$

\square By default the eigendecomposition of real symmetric matrix M is $M=Q \Lambda Q^{\top}$

Orthogonal matrix property

\square For square matrix Q, the following are equivalent 1. Q is orthogonal matrix
2. $Q^{\top} Q=I$
3. $Q Q^{\top}=I$
$2 \Leftrightarrow 1$ Let u_{i} be the column vectors of A
$Q^{\top} Q=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]\left[\begin{array}{lll}u_{1} & \ldots & u_{n}\end{array}\right]=\left[\begin{array}{ccc}u_{1} u_{1} & \ldots & u_{1} u_{n} \\ \vdots & \ddots & \vdots \\ u_{n} u_{1} & \ldots & u_{n} u_{n}\end{array}\right]$

$$
\left[\begin{array}{ccc}
u_{1} u_{1} & \ldots & u_{1} u_{n} \\
\vdots & \ddots & \vdots \\
u_{n} u_{1} & \ldots & u_{n} u_{n}
\end{array}\right]=I \text { implies } u_{i} u_{j}=0 \text { for } i \neq j
$$

Eigenspace

\square The eigenspace of a matrix M is the set of all the vectors u that fulfills $M u=\lambda u$ - The rank of M is its number of non-zero λ
\square A eigenbasis of a $n \times n$ matrix M is a set of n orthogonal eigenvectors of M (including those with zero eigenvalues)

- Any datapoint x_{i} in M can be written as a linear combination of the eigenbasis, $x_{i}=\sum_{j}\left\langle x_{i}, u_{j}\right\rangle u_{j}$
- Any eigenvector u_{i} for M can be written as a linear combination of the datapoints x_{i}, by solving the system of equations $x_{i}=\sum_{j}\left\langle x_{i}, u_{j}\right\rangle u_{j}$

Rayleigh Quotient

$\square \frac{u^{\top} M u}{u^{\top} u}$ is called the Rayleigh quotient
\square Let $\lambda_{1}, \ldots, \lambda_{n}$ where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of M
\square Min-max Theorem (simplified)

- Maximum of the Rayleigh quotient,

$$
\max _{\|u\|=1} \frac{u^{\top} M u}{u^{\top} u}=\lambda_{1}
$$

- Minimum of the Rayleigh quotient,

$$
\min _{\|u\|=1} \frac{u^{\top} M u}{u^{\top} u}=\lambda_{n}
$$

Proof of min-max theorem

\square Find stationary points of $\frac{u^{\top} M u}{u^{\top} u}$

- Letting $u^{\prime}=c u$ does not change $\frac{u^{\top} M u}{u^{\top} u}\left(=\frac{u^{\prime \top} M u^{\prime}}{u^{\prime \top} u^{\prime}}\right)$
- Hence consider only unit u
- Maximize $u^{\top} M u$ subject to $u^{\top} u=1$
- Use Lagrangian to add $u^{\top} u=1$ constraint

$$
\begin{aligned}
& \mathcal{L}(u, \lambda)=u^{\top} M u+\lambda\left(u^{\top} u-1\right) \\
& \frac{\partial \mathcal{L}}{\partial u}=u^{\top}\left(M+M^{\top}\right)+2 \lambda u^{\top}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=u^{\top} u-1=0 \\
& u^{\top}\left(M+M^{\top}\right)=-2 \lambda u^{\top} \Rightarrow\left(M+M^{\top}\right) u=-2 \lambda u
\end{aligned}
$$

Since M is symmetric, $2 M u=-2 \lambda u$
$\Rightarrow M u=\tilde{\lambda} u$ where $\tilde{\lambda}=-2 \lambda$
\square Stationary points are solutions of $M u=\tilde{\lambda} u$

Eigendecomposition applications

\square Matrix inverse
\square Matrix approximation
\square Matrix factorization

- Multidimensional Scaling
\square Minimizing/maximizing Rayleigh Quotient
- PCA
- Max of covariance matrix
- Spectral clustering
- Min of graph Laplacian

Singular Value Decomposition

\square Any matrix can be singular value decomposed

- $M=U S V^{*}$
- M is $m \times n$ matrix
- U is an $m \times m$ unitary matrix

For unitary matrix

 $U, U U^{*}=U^{*} U=I$- S is an $m \times n$ diagonal matrix
- V is an $n \times n$ unitary matrix
\square For a real $M, V^{*}=V^{\top}$ (and $U=U^{\top}$) hence $M=U S V^{\top}$

SVD applications
\square Solving linear equations
\square Linear regression
\square Pseudoinverse
\square Kabsch algorithm
\square Matrix approximation
\square As a eigendecomposition (see next slide)

SVD and eigendecomposition

\square SVD of matrix M simultaneously performs a eigendecomposition of $M^{\top} M$ and $M M^{\top}$

- $M^{\top} M$ and $M M^{\top}$ are important matrices (next slide)
- Given SVD of $M=U S V^{\top}$, since V and U are unitary
- $\quad M^{\top} M=V S^{\top} U^{\top} U S V^{\top}=V\left(S^{\top} S\right) V^{\top}=V S^{2} V^{\top}$
- $\quad M M^{\top}=U S V^{\top} V S^{\top} U^{\top}=U\left(S^{\top} S\right) U^{\top}=U S^{2} U^{\top}$
$\Rightarrow V$ is the eigenbasis of $M^{\top} M$ and U is the eigenbasis of $M M^{\top}$ respectively
$\Rightarrow M^{\top} M$ and $M M^{\top}$ have the same eigenvalues, namely S^{2}

Special Matrices

- Three types of matrices lead to many results
- Covariance ($A^{\top} A$ for column centered A) \Rightarrow Principal Component Analysis
- Gramian ($A A^{\top}$ for column centered A) \Rightarrow Multidimensional Scaling
\Rightarrow Kernel Method
- Graph Laplacian ($A A^{\top}$ for incidence matrix A)
\Rightarrow Spectral Clustering

