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Notations (Important)
 A vector is by default a column
 For vectors 𝑥𝑥 and 𝑦𝑦, their inner (or dot) 

product, 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥⊤𝑦𝑦
 𝑥𝑥 + 𝑧𝑧,𝑦𝑦 = 𝑥𝑥,𝑦𝑦 + 𝑧𝑧,𝑦𝑦 = 𝑥𝑥⊤𝑦𝑦 + 𝑧𝑧⊤𝑦𝑦

 Beware: some texts use row vectors and 𝑥𝑥,𝑦𝑦 = 𝑥𝑥𝑦𝑦⊤

 For a matrix an example is a row
 An example (or datapoint) is a row 𝑥𝑥𝑖𝑖 while 

each feature is a columns
 Features are like fixed columns in a spreadsheet

 For matrices 𝑋𝑋 and 𝑌𝑌, 𝑋𝑋,𝑌𝑌 = 𝑋𝑋𝑌𝑌⊤ or ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖⊤
 Beware: some texts use column for examples and let 𝑋𝑋,𝑌𝑌 = 𝑋𝑋⊤𝑌𝑌

 So it’s 𝑥𝑥⊤𝑥𝑥, 𝑥𝑥⊤𝑀𝑀𝑥𝑥, but 𝑋𝑋𝑋𝑋⊤ and 𝑄𝑄Λ𝑄𝑄⊤
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Outer product
 The outer product of two vectors 𝑥𝑥 and 𝑦𝑦 is a 

matrix 𝑀𝑀 where the 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
e.g. 𝑎𝑎𝑏𝑏 𝑐𝑐 𝑑𝑑 = 𝑎𝑎𝑐𝑐 𝑎𝑎𝑑𝑑

𝑏𝑏𝑐𝑐 𝑏𝑏𝑑𝑑

 The outer product (or Kronecker product) of two 
matrices is a tensor
 We don’t deal with tensors yet

 Common uses of outer products
 Denote pairwise inner product matrix,

𝑥𝑥𝑥𝑥⊤ =
𝑥𝑥1𝑥𝑥1 𝑥𝑥1𝑥𝑥2 …
𝑥𝑥2𝑥𝑥1 𝑥𝑥2𝑥𝑥2 …
⋮ ⋮ ⋱

 Denote matrix of all ones, 𝟏𝟏𝟏𝟏⊤ =
1 … 1
⋮ ⋱ ⋮
1 … 1
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More notations
 Conventions
 𝑥𝑥𝑖𝑖 from a matrix is by default a row vector
 𝑥𝑥𝑖𝑖 from a vector is a scalar
 𝑥𝑥𝑖𝑖𝑖𝑖 from a matrix is a scalar
 𝑥𝑥, 𝑢𝑢𝑖𝑖 (all other vectors) are by default column 

vectors
 Common expansions

𝑥𝑥𝑦𝑦⊤ = ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝑋𝑋𝑌𝑌 𝑖𝑖𝑖𝑖 = ∑𝑘𝑘 𝑥𝑥𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘𝑖𝑖
𝑥𝑥⊤𝑦𝑦 𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝑋𝑋𝑌𝑌⊤ 𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖⊤ = ∑𝑘𝑘 𝑥𝑥𝑖𝑖𝑘𝑘𝑦𝑦𝑖𝑖𝑘𝑘
𝑥𝑥⊤𝑀𝑀𝑦𝑦 = ∑𝑖𝑖𝑖𝑖 𝑚𝑚𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝑋𝑋⊤𝑌𝑌 𝑖𝑖𝑖𝑖 = ∑𝑘𝑘 𝑥𝑥𝑘𝑘𝑖𝑖𝑦𝑦𝑘𝑘𝑖𝑖
𝑋𝑋⊤𝑋𝑋 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖⊤𝑥𝑥𝑖𝑖 (used in kernel PCA)
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Python call for inner product
 Inner products are performed with np.dot()

 When called on two arrays, the arrays are 
automatically oriented to perform inner product
 Note that [[1],[1]] is a 1 × 2 matrix

 When called on an array x and a matrix X, the array is 
automatically read as a row for np.dot(x,X), and 
column for np.dot(X,x) to perform inner product

 When called on two matrices, make sure that the 
matrices are oriented correctly, or you will get 𝑋𝑋T𝑋𝑋
when you want 𝑋𝑋𝑋𝑋T

 Impossible to get outer product with np.dot()

 If you write x*y or X*Y, what you get is an 
element-wise multiplication
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Eigenvectors and eigenvalues
 Only concerned with square matrices
 Most matrices we consider are 

furthermore symmetric and of only real
values

 A eigenvector for a square matrix 𝑀𝑀 is 
vector 𝑢𝑢 where 𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢
 𝑢𝑢 is invariant under transformation M
 The scaling factor 𝜆𝜆 is a eigenvalue
 Use 𝑢𝑢 to denote a column vector even when 

multiple 𝑢𝑢𝑖𝑖 are collected into a matrix 𝑈𝑈 =
𝑢𝑢1 … 𝑢𝑢𝑘𝑘
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𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢 is a system of equations 
 An equation such as 𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢 actually states 𝑛𝑛

linear equations, namely ∀𝑖𝑖,∑𝑖𝑖𝑚𝑚𝑖𝑖𝑢𝑢𝑖𝑖 = 𝜆𝜆𝑢𝑢𝑖𝑖
 For example

𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

𝑢𝑢1
𝑢𝑢2 = 𝜆𝜆

𝑢𝑢1
𝑢𝑢2

states the two equations
𝑚𝑚11𝑢𝑢1 + 𝑚𝑚12𝑢𝑢2 = 𝜆𝜆𝑢𝑢1
𝑚𝑚21𝑢𝑢1 + 𝑚𝑚22𝑢𝑢2 = 𝜆𝜆𝑢𝑢2

 This is important when manipulating equation 
by multiplying with other matrix/vector
 For example when 𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢 is multiplied from the 

left by 𝑢𝑢⊤, the resultant 𝑢𝑢⊤𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢⊤𝑢𝑢 becomes only 
one equation, that is, ∑𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 = 𝜆𝜆∑𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖
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Eigendecomposition
 A eigendecomposition of matrix 𝑀𝑀 is

𝑀𝑀 = 𝑄𝑄Λ𝑄𝑄−1

where Λ is diagonal, and 𝑄𝑄 contains (not 
necessarily orthogonal) eigenvectors of M
 Any normal 𝑀𝑀 can be eigendecomposed
 The set of eigenvalues for 𝑀𝑀 is unique
 There can be different eigenvectors of the 

same eigenvalue (hence not unique)
 For real symmetric 𝑀𝑀, eigenvectors that 

correspond to distinct eigenvalues are 
(chosen to be) orthogonal
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Orthogonal eigendecomposition
 For real symmetric 𝑀𝑀, can choose 𝑄𝑄 to be 

orthogonal matrix (proof omitted)
 For square matrix 𝑄𝑄, the following are equivalent 

(proof next slide)
1. 𝑄𝑄 is an orthogonal matrix
2. 𝑄𝑄⊤𝑄𝑄 = 𝐼𝐼
3. 𝑄𝑄𝑄𝑄⊤ = 𝐼𝐼
 Corollary. 𝑄𝑄⊤𝑄𝑄 = 𝐼𝐼 ⇒ 𝑄𝑄⊤𝑄𝑄𝑄𝑄−1 = 𝑄𝑄−1

⇒ 𝑄𝑄⊤ = 𝑄𝑄−1

 By default the eigendecomposition of real 
symmetric matrix 𝑀𝑀 is 𝑀𝑀 = 𝑄𝑄Λ𝑄𝑄⊤
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Orthogonal matrix property
 For square matrix 𝑄𝑄, the following are equivalent

1. 𝑄𝑄 is orthogonal matrix
2. 𝑄𝑄⊤𝑄𝑄 = 𝐼𝐼
3. 𝑄𝑄𝑄𝑄⊤ = 𝐼𝐼

2⇔1 Let 𝑢𝑢𝑖𝑖 be the column vectors of 𝐴𝐴

𝑄𝑄⊤𝑄𝑄 =
𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛

𝑢𝑢1 … 𝑢𝑢𝑛𝑛 =
𝑢𝑢1𝑢𝑢1 … 𝑢𝑢1𝑢𝑢𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛𝑢𝑢1 … 𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛
𝑢𝑢1𝑢𝑢1 … 𝑢𝑢1𝑢𝑢𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛𝑢𝑢1 … 𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛
= 𝐼𝐼 implies 𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗
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Eigenspace
 The eigenspace of a matrix 𝑀𝑀 is the set of 

all the vectors 𝑢𝑢 that fulfills 𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢
 The rank of 𝑀𝑀 is its number of non-zero 𝜆𝜆

 A eigenbasis of a 𝑛𝑛 × 𝑛𝑛 matrix 𝑀𝑀 is a set of 
𝑛𝑛 orthogonal eigenvectors of 𝑀𝑀 (including 
those with zero eigenvalues)
 Any datapoint 𝑥𝑥𝑖𝑖 in 𝑀𝑀 can be written as a linear 

combination of the eigenbasis, 𝑥𝑥𝑖𝑖 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖
 Any eigenvector 𝑢𝑢𝑖𝑖 for 𝑀𝑀 can be written as a linear 

combination of the datapoints 𝑥𝑥𝑖𝑖, by solving the 
system of equations 𝑥𝑥𝑖𝑖 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖 𝑢𝑢𝑖𝑖
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Rayleigh Quotient


𝑢𝑢⊤𝑀𝑀𝑢𝑢
𝑢𝑢⊤𝑢𝑢

is called the Rayleigh quotient
 Let 𝜆𝜆1,…, 𝜆𝜆𝑛𝑛 where 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ … ≥ 𝜆𝜆𝑛𝑛 be 

the eigenvalues of 𝑀𝑀
 Min-max Theorem (simplified)
 Maximum of the Rayleigh quotient, 

max
𝑢𝑢 =1

𝑢𝑢⊤𝑀𝑀𝑢𝑢
𝑢𝑢⊤𝑢𝑢

= 𝜆𝜆1

 Minimum of the Rayleigh quotient, 

min
𝑢𝑢 =1

𝑢𝑢⊤𝑀𝑀𝑢𝑢
𝑢𝑢⊤𝑢𝑢

= 𝜆𝜆𝑛𝑛
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Proof of min-max theorem
 Find stationary points of 𝑢𝑢

⊤𝑀𝑀𝑢𝑢
𝑢𝑢⊤𝑢𝑢

 Letting 𝑢𝑢′ = 𝑐𝑐𝑢𝑢 does not change 𝑢𝑢
⊤𝑀𝑀𝑢𝑢
𝑢𝑢⊤𝑢𝑢

= 𝑢𝑢′⊤𝑀𝑀𝑢𝑢′

𝑢𝑢′⊤𝑢𝑢′
 Hence consider only unit 𝑢𝑢
 Maximize 𝑢𝑢⊤𝑀𝑀𝑢𝑢 subject to 𝑢𝑢⊤𝑢𝑢 = 1

 Use Lagrangian to add 𝑢𝑢⊤𝑢𝑢 = 1 constraint
ℒ 𝑢𝑢, 𝜆𝜆 = 𝑢𝑢⊤𝑀𝑀𝑢𝑢 + 𝜆𝜆(𝑢𝑢⊤𝑢𝑢 − 1)

𝜕𝜕ℒ
𝜕𝜕𝑢𝑢

= 𝑢𝑢⊤ 𝑀𝑀 + 𝑀𝑀⊤ + 2𝜆𝜆𝑢𝑢⊤ = 0
𝜕𝜕ℒ
𝜕𝜕𝜆𝜆

= 𝑢𝑢⊤𝑢𝑢 − 1 = 0
𝑢𝑢⊤ 𝑀𝑀 + 𝑀𝑀⊤ = −2𝜆𝜆𝑢𝑢⊤ ⇒ 𝑀𝑀 + 𝑀𝑀⊤ 𝑢𝑢 = −2𝜆𝜆𝑢𝑢
Since 𝑀𝑀 is symmetric, 2𝑀𝑀𝑢𝑢 = −2𝜆𝜆𝑢𝑢
⇒ 𝑀𝑀𝑢𝑢 = �̃�𝜆𝑢𝑢 where �̃�𝜆 = −2𝜆𝜆

 Stationary points are solutions of 𝑀𝑀𝑢𝑢 = �̃�𝜆𝑢𝑢

Matrix differentiation*
𝜕𝜕𝑥𝑥⊤𝑀𝑀𝑥𝑥
𝜕𝜕𝑥𝑥

= 𝑥𝑥⊤ 𝑀𝑀 + 𝑀𝑀⊤

𝜕𝜕𝑥𝑥⊤𝑥𝑥
𝜕𝜕𝑥𝑥

= 2𝑥𝑥⊤

* https://www.comp.nus.edu.sg/~CS5240/lecture/matrix-diff.pdf
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Eigendecomposition applications
 Matrix inverse
 Matrix approximation
 Matrix factorization
 Multidimensional Scaling

 Minimizing/maximizing Rayleigh Quotient
 PCA

 Max of covariance matrix
 Spectral clustering

 Min of graph Laplacian
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Singular Value Decomposition
 Any matrix can be singular value 

decomposed
 𝑀𝑀 = 𝑈𝑈𝑆𝑆𝑉𝑉∗
 𝑀𝑀 is 𝑚𝑚 × 𝑛𝑛 matrix 
 𝑈𝑈 is an 𝑚𝑚 × 𝑚𝑚 unitary matrix
 𝑆𝑆 is an 𝑚𝑚 × 𝑛𝑛 diagonal matrix
 𝑉𝑉 is an 𝑛𝑛 × 𝑛𝑛 unitary matrix

 For a real 𝑀𝑀, 𝑉𝑉∗ = 𝑉𝑉⊤ (and 𝑈𝑈 = 𝑈𝑈⊤) hence 
𝑀𝑀 = 𝑈𝑈𝑆𝑆𝑉𝑉⊤

For unitary matrix 
𝑈𝑈, 𝑈𝑈𝑈𝑈∗ = 𝑈𝑈∗𝑈𝑈 = 𝐼𝐼
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SVD applications
 Solving linear equations
 Linear regression
 Pseudoinverse
 Kabsch algorithm
 Matrix approximation
 As a eigendecomposition (see 

next slide)
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SVD and eigendecomposition
 SVD of matrix 𝑀𝑀 simultaneously performs a 

eigendecomposition of 𝑀𝑀⊤𝑀𝑀 and 𝑀𝑀𝑀𝑀⊤

 𝑀𝑀⊤𝑀𝑀 and 𝑀𝑀𝑀𝑀⊤ are important matrices (next 
slide)

 Given SVD of 𝑀𝑀 = 𝑈𝑈𝑆𝑆𝑉𝑉⊤, since 𝑉𝑉 and 𝑈𝑈 are 
unitary
 𝑀𝑀⊤𝑀𝑀 = 𝑉𝑉𝑆𝑆⊤𝑈𝑈⊤𝑈𝑈𝑆𝑆𝑉𝑉⊤ = 𝑉𝑉 𝑆𝑆⊤𝑆𝑆 𝑉𝑉⊤ = 𝑉𝑉𝑆𝑆2𝑉𝑉⊤

 𝑀𝑀𝑀𝑀⊤ = 𝑈𝑈𝑆𝑆𝑉𝑉⊤𝑉𝑉𝑆𝑆⊤𝑈𝑈⊤ = 𝑈𝑈 𝑆𝑆⊤𝑆𝑆 𝑈𝑈⊤ = 𝑈𝑈𝑆𝑆2𝑈𝑈⊤

⇒ 𝑉𝑉 is the eigenbasis of 𝑀𝑀⊤𝑀𝑀 and 𝑈𝑈 is the 
eigenbasis of 𝑀𝑀𝑀𝑀⊤ respectively

⇒ 𝑀𝑀⊤𝑀𝑀 and 𝑀𝑀𝑀𝑀⊤ have the same 
eigenvalues, namely 𝑆𝑆2
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Special Matrices
 Three types of matrices lead to many 

results
 Covariance (𝐴𝐴⊤𝐴𝐴 for column centered 𝐴𝐴)

⇒ Principal Component Analysis
 Gramian (𝐴𝐴𝐴𝐴⊤ for column centered 𝐴𝐴)

⇒ Multidimensional Scaling
⇒ Kernel Method

 Graph Laplacian (𝐴𝐴𝐴𝐴⊤ for incidence 
matrix 𝐴𝐴)
⇒ Spectral Clustering
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