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Notations (Important)
 A vector is by default a column
 For vectors 𝑥𝑥 and 𝑦𝑦, their inner (or dot) 

product, 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥⊤𝑦𝑦
 𝑥𝑥 + 𝑧𝑧,𝑦𝑦 = 𝑥𝑥,𝑦𝑦 + 𝑧𝑧,𝑦𝑦 = 𝑥𝑥⊤𝑦𝑦 + 𝑧𝑧⊤𝑦𝑦

 Beware: some texts use row vectors and 𝑥𝑥,𝑦𝑦 = 𝑥𝑥𝑦𝑦⊤

 For a matrix an example is a row
 An example (or datapoint) is a row 𝑥𝑥𝑖𝑖 while 

each feature is a columns
 Features are like fixed columns in a spreadsheet

 For matrices 𝑋𝑋 and 𝑌𝑌, 𝑋𝑋,𝑌𝑌 = 𝑋𝑋𝑋𝑋⊤ or ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖⊤
 Beware: some texts use column for examples and let 𝑋𝑋,𝑌𝑌 = 𝑋𝑋⊤𝑌𝑌

 So it’s 𝑥𝑥⊤𝑥𝑥, 𝑥𝑥⊤𝑀𝑀𝑀𝑀, but 𝑋𝑋𝑋𝑋⊤ and 𝑄𝑄Λ𝑄𝑄⊤
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Outer product
 The outer product of two vectors 𝑥𝑥 and 𝑦𝑦 is a 

matrix 𝑀𝑀 where the 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗
e.g. 𝑎𝑎𝑏𝑏 𝑐𝑐 𝑑𝑑 = 𝑎𝑎𝑐𝑐 𝑎𝑎𝑎𝑎

𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏

 The outer product (or Kronecker product) of two 
matrices is a tensor
 We don’t deal with tensors yet

 Common uses of outer products
 Denote pairwise inner product matrix,

𝑥𝑥𝑥𝑥⊤ =
𝑥𝑥1𝑥𝑥1 𝑥𝑥1𝑥𝑥2 …
𝑥𝑥2𝑥𝑥1 𝑥𝑥2𝑥𝑥2 …
⋮ ⋮ ⋱

 Denote matrix of all ones, 𝟏𝟏𝟏𝟏⊤ =
1 … 1
⋮ ⋱ ⋮
1 … 1
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More notations
 Conventions
 𝑥𝑥𝑖𝑖 from a matrix is by default a row vector
 𝑥𝑥𝑖𝑖 from a vector is a scalar
 𝑥𝑥𝑖𝑖𝑗𝑗 from a matrix is a scalar
 𝑥𝑥, 𝑢𝑢𝑖𝑖 (all other vectors) are by default column 

vectors
 Common expansions

𝑥𝑥𝑦𝑦⊤ = ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 𝑋𝑋𝑋𝑋 𝑖𝑖𝑖𝑖 = ∑𝑘𝑘 𝑥𝑥𝑖𝑖𝑖𝑖𝑦𝑦𝑘𝑘𝑘𝑘
𝑥𝑥⊤𝑦𝑦 𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 𝑋𝑋𝑌𝑌⊤ 𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗⊤ = ∑𝑘𝑘 𝑥𝑥𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗𝑘𝑘
𝑥𝑥⊤𝑀𝑀𝑦𝑦 = ∑𝑖𝑖𝑖𝑖 𝑚𝑚𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 𝑋𝑋⊤𝑌𝑌 𝑖𝑖𝑖𝑖 = ∑𝑘𝑘 𝑥𝑥𝑘𝑘𝑖𝑖𝑦𝑦𝑘𝑘𝑗𝑗
𝑋𝑋⊤𝑋𝑋 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖⊤𝑥𝑥𝑖𝑖 (used in kernel PCA)
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Python call for inner product
 Inner products are performed with np.dot()

 When called on two arrays, the arrays are 
automatically oriented to perform inner product
 Note that [[1],[1]] is a 1 × 2 matrix

 When called on an array x and a matrix X, the array is 
automatically read as a row for np.dot(x,X), and 
column for np.dot(X,x) to perform inner product

 When called on two matrices, make sure that the 
matrices are oriented correctly, or you will get 𝑋𝑋T𝑋𝑋
when you want 𝑋𝑋𝑋𝑋T

 Impossible to get outer product with np.dot()

 If you write x*y or X*Y, what you get is an 
element-wise multiplication
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Eigenvectors and eigenvalues
 Only concerned with square matrices
 Most matrices we consider are 

furthermore symmetric and of only real
values

 A eigenvector for a square matrix 𝑀𝑀 is 
vector 𝑢𝑢 where 𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑢𝑢
 𝑢𝑢 is invariant under transformation M
 The scaling factor 𝜆𝜆 is a eigenvalue
 Use 𝑢𝑢 to denote a column vector even when 

multiple 𝑢𝑢𝑖𝑖 are collected into a matrix 𝑈𝑈 =
𝑢𝑢1 … 𝑢𝑢𝑘𝑘
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𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑢𝑢 is a system of equations 
 An equation such as 𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑢𝑢 actually states 𝑛𝑛

linear equations, namely ∀𝑖𝑖,∑𝑗𝑗𝑚𝑚𝑖𝑖𝑢𝑢𝑗𝑗 = 𝜆𝜆𝑢𝑢𝑖𝑖
 For example

𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

𝑢𝑢1
𝑢𝑢2 = 𝜆𝜆

𝑢𝑢1
𝑢𝑢2

states the two equations
𝑚𝑚11𝑢𝑢1 + 𝑚𝑚12𝑢𝑢2 = 𝜆𝜆𝑢𝑢1
𝑚𝑚21𝑢𝑢1 + 𝑚𝑚22𝑢𝑢2 = 𝜆𝜆𝑢𝑢2

 This is important when manipulating equation 
by multiplying with other matrix/vector
 For example when 𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑢𝑢 is multiplied from the 

left by 𝑢𝑢⊤, the resultant 𝑢𝑢⊤𝑀𝑀𝑢𝑢 = 𝜆𝜆𝑢𝑢⊤𝑢𝑢 becomes only 
one equation, that is, ∑𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗 = 𝜆𝜆∑𝑖𝑖𝑖𝑖 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗
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Eigendecomposition
 A eigendecomposition of matrix 𝑀𝑀 is

𝑀𝑀 = 𝑄𝑄Λ𝑄𝑄−1

where Λ is diagonal, and 𝑄𝑄 contains (not 
necessarily orthogonal) eigenvectors of M
 Any normal 𝑀𝑀 can be eigendecomposed
 The set of eigenvalues for 𝑀𝑀 is unique
 There can be different eigenvectors of the 

same eigenvalue (hence not unique)
 For real symmetric 𝑀𝑀, eigenvectors that 

correspond to distinct eigenvalues are 
(chosen to be) orthogonal
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Orthogonal eigendecomposition
 For real symmetric 𝑀𝑀, can choose 𝑄𝑄 to be 

orthogonal matrix (proof omitted)
 For square matrix 𝑄𝑄, the following are equivalent 

(proof next slide)
1. 𝑄𝑄 is an orthogonal matrix
2. 𝑄𝑄⊤𝑄𝑄 = 𝐼𝐼
3. 𝑄𝑄𝑄𝑄⊤ = 𝐼𝐼
 Corollary. 𝑄𝑄⊤𝑄𝑄 = 𝐼𝐼 ⇒ 𝑄𝑄⊤𝑄𝑄𝑄𝑄−1 = 𝑄𝑄−1

⇒ 𝑄𝑄⊤ = 𝑄𝑄−1

 By default the eigendecomposition of real 
symmetric matrix 𝑀𝑀 is 𝑀𝑀 = 𝑄𝑄Λ𝑄𝑄⊤
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Orthogonal matrix property
 For square matrix 𝑄𝑄, the following are equivalent

1. 𝑄𝑄 is orthogonal matrix
2. 𝑄𝑄⊤𝑄𝑄 = 𝐼𝐼
3. 𝑄𝑄𝑄𝑄⊤ = 𝐼𝐼

2⇔1 Let 𝑢𝑢𝑖𝑖 be the column vectors of 𝐴𝐴

𝑄𝑄⊤𝑄𝑄 =
𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛

𝑢𝑢1 … 𝑢𝑢𝑛𝑛 =
𝑢𝑢1𝑢𝑢1 … 𝑢𝑢1𝑢𝑢𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛𝑢𝑢1 … 𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛
𝑢𝑢1𝑢𝑢1 … 𝑢𝑢1𝑢𝑢𝑛𝑛
⋮ ⋱ ⋮

𝑢𝑢𝑛𝑛𝑢𝑢1 … 𝑢𝑢𝑛𝑛𝑢𝑢𝑛𝑛
= 𝐼𝐼 implies 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 0 for 𝑖𝑖 ≠ 𝑗𝑗
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Eigenspace
 The eigenspace of a matrix 𝑀𝑀 is the set of 

all the vectors 𝑢𝑢 that fulfills 𝑀𝑀𝑀𝑀 = 𝜆𝜆𝑢𝑢
 The rank of 𝑀𝑀 is its number of non-zero 𝜆𝜆

 A eigenbasis of a 𝑛𝑛 × 𝑛𝑛 matrix 𝑀𝑀 is a set of 
𝑛𝑛 orthogonal eigenvectors of 𝑀𝑀 (including 
those with zero eigenvalues)
 Any datapoint 𝑥𝑥𝑖𝑖 in 𝑀𝑀 can be written as a linear 

combination of the eigenbasis, 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗 𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑗𝑗 𝑢𝑢𝑗𝑗
 Any eigenvector 𝑢𝑢𝑖𝑖 for 𝑀𝑀 can be written as a linear 

combination of the datapoints 𝑥𝑥𝑖𝑖, by solving the 
system of equations 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗 𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑗𝑗 𝑢𝑢𝑗𝑗
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Rayleigh Quotient


𝑢𝑢⊤𝑀𝑀𝑀𝑀
𝑢𝑢⊤𝑢𝑢

is called the Rayleigh quotient
 Let 𝜆𝜆1,…, 𝜆𝜆𝑛𝑛 where 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ … ≥ 𝜆𝜆𝑛𝑛 be 

the eigenvalues of 𝑀𝑀
 Min-max Theorem (simplified)
 Maximum of the Rayleigh quotient, 

max
𝑢𝑢 =1

𝑢𝑢⊤𝑀𝑀𝑀𝑀
𝑢𝑢⊤𝑢𝑢

= 𝜆𝜆1

 Minimum of the Rayleigh quotient, 

min
𝑢𝑢 =1

𝑢𝑢⊤𝑀𝑀𝑀𝑀
𝑢𝑢⊤𝑢𝑢

= 𝜆𝜆𝑛𝑛
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Proof of min-max theorem
 Find stationary points of 𝑢𝑢

⊤𝑀𝑀𝑀𝑀
𝑢𝑢⊤𝑢𝑢

 Letting 𝑢𝑢′ = 𝑐𝑐𝑐𝑐 does not change 𝑢𝑢
⊤𝑀𝑀𝑀𝑀
𝑢𝑢⊤𝑢𝑢

= 𝑢𝑢′⊤𝑀𝑀𝑢𝑢′

𝑢𝑢′⊤𝑢𝑢′
 Hence consider only unit 𝑢𝑢
 Maximize 𝑢𝑢⊤𝑀𝑀𝑀𝑀 subject to 𝑢𝑢⊤𝑢𝑢 = 1

 Use Lagrangian to add 𝑢𝑢⊤𝑢𝑢 = 1 constraint
ℒ 𝑢𝑢, 𝜆𝜆 = 𝑢𝑢⊤𝑀𝑀𝑀𝑀 + 𝜆𝜆(𝑢𝑢⊤𝑢𝑢 − 1)

𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

= 𝑢𝑢⊤ 𝑀𝑀 + 𝑀𝑀⊤ + 2𝜆𝜆𝑢𝑢⊤ = 0
𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

= 𝑢𝑢⊤𝑢𝑢 − 1 = 0
𝑢𝑢⊤ 𝑀𝑀 + 𝑀𝑀⊤ = −2𝜆𝜆𝑢𝑢⊤ ⇒ 𝑀𝑀 + 𝑀𝑀⊤ 𝑢𝑢 = −2𝜆𝜆𝜆𝜆
Since 𝑀𝑀 is symmetric, 2𝑀𝑀𝑀𝑀 = −2𝜆𝜆𝜆𝜆
⇒ 𝑀𝑀𝑀𝑀 = 𝜆̃𝜆𝑢𝑢 where 𝜆̃𝜆 = −2𝜆𝜆

 Stationary points are solutions of 𝑀𝑀𝑀𝑀 = 𝜆̃𝜆𝑢𝑢

Matrix differentiation*
𝜕𝜕𝑥𝑥⊤𝑀𝑀𝑥𝑥
𝜕𝜕𝑥𝑥

= 𝑥𝑥⊤ 𝑀𝑀 + 𝑀𝑀⊤

𝜕𝜕𝑥𝑥⊤𝑥𝑥
𝜕𝜕𝜕𝜕

= 2𝑥𝑥⊤

* https://www.comp.nus.edu.sg/~CS5240/lecture/matrix-diff.pdf
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Eigendecomposition applications
 Matrix inverse
 Matrix approximation
 Matrix factorization
 Multidimensional Scaling

 Minimizing/maximizing Rayleigh Quotient
 PCA

 Max of covariance matrix
 Spectral clustering

 Min of graph Laplacian
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Singular Value Decomposition
 Any matrix can be singular value 

decomposed
 𝑀𝑀 = 𝑈𝑈𝑆𝑆𝑉𝑉∗
 𝑀𝑀 is 𝑚𝑚 × 𝑛𝑛 matrix 
 𝑈𝑈 is an 𝑚𝑚 × 𝑚𝑚 unitary matrix
 𝑆𝑆 is an 𝑚𝑚 × 𝑛𝑛 diagonal matrix
 𝑉𝑉 is an 𝑛𝑛 × 𝑛𝑛 unitary matrix

 For a real 𝑀𝑀, 𝑉𝑉∗ = 𝑉𝑉⊤ (and 𝑈𝑈 = 𝑈𝑈⊤) hence 
𝑀𝑀 = 𝑈𝑈𝑆𝑆𝑉𝑉⊤

For unitary matrix 
𝑈𝑈, 𝑈𝑈𝑈𝑈∗ = 𝑈𝑈∗𝑈𝑈 = 𝐼𝐼
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SVD applications
 Solving linear equations
 Linear regression
 Pseudoinverse
 Kabsch algorithm
 Matrix approximation
 As a eigendecomposition (see 

next slide)
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SVD and eigendecomposition
 SVD of matrix 𝑀𝑀 simultaneously performs a 

eigendecomposition of 𝑀𝑀⊤𝑀𝑀 and 𝑀𝑀𝑀𝑀⊤

 𝑀𝑀⊤𝑀𝑀 and 𝑀𝑀𝑀𝑀⊤ are important matrices (next 
slide)

 Given SVD of 𝑀𝑀 = 𝑈𝑈𝑈𝑈𝑉𝑉⊤, since 𝑉𝑉 and 𝑈𝑈 are 
unitary
 𝑀𝑀⊤𝑀𝑀 = 𝑉𝑉𝑆𝑆⊤𝑈𝑈⊤𝑈𝑈𝑈𝑈𝑉𝑉⊤ = 𝑉𝑉 𝑆𝑆⊤𝑆𝑆 𝑉𝑉⊤ = 𝑉𝑉𝑆𝑆2𝑉𝑉⊤

 𝑀𝑀𝑀𝑀⊤ = 𝑈𝑈𝑆𝑆𝑉𝑉⊤𝑉𝑉𝑆𝑆⊤𝑈𝑈⊤ = 𝑈𝑈 𝑆𝑆⊤𝑆𝑆 𝑈𝑈⊤ = 𝑈𝑈𝑆𝑆2𝑈𝑈⊤

⇒ 𝑉𝑉 is the eigenbasis of 𝑀𝑀⊤𝑀𝑀 and 𝑈𝑈 is the 
eigenbasis of 𝑀𝑀𝑀𝑀⊤ respectively

⇒ 𝑀𝑀⊤𝑀𝑀 and 𝑀𝑀𝑀𝑀⊤ have the same 
eigenvalues, namely 𝑆𝑆2
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Special Matrices
 Three types of matrices lead to many 

results
 Covariance (𝐴𝐴⊤𝐴𝐴 for column centered 𝐴𝐴)

⇒ Principal Component Analysis
 Gramian (𝐴𝐴𝐴𝐴⊤ for column centered 𝐴𝐴)

⇒ Multidimensional Scaling
⇒ Kernel Method

 Graph Laplacian (𝐴𝐴𝐴𝐴⊤ for incidence 
matrix 𝐴𝐴)
⇒ Spectral Clustering
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