Gramian and Covariance

Ng Yen Kaow

The inner products AA^{T} and $A^{\mathsf{T}}A$

- \Box Given an $n \times m$ matrix A where the rows are datapoints, columns are features with zero sum for each column
 - The inner product A^TA is the covariance matrix (more precisely A^TA/n)
 - Used in PCA
 - The inner product AA^T is called a Gram matrix, or Gramian
 - Used in Multidimensional Scaling
 - Used in Kernel method
 - Eigendecomposition of A^TA and AA^T
 are closely related

Properties of AA^{T} and $A^{\mathsf{T}}A$

- \Box AA^{T} and $A^{\mathsf{T}}A$ are related
 - Closely related eigendecomposition (later)
 - Simultaneous solution in SVD (shown)
- $\square \quad M = AA^{\top} \Leftrightarrow \forall x, x^{\top}Mx \ge 0 \ (\Rightarrow) \text{ proof later}$ Similarly $M = A^{\top}A \Leftrightarrow \forall x, x^{\top}Mx \ge 0$
 - M where $(\forall x)[x^TMx \ge 0]$ holds is said to be positive semi-definite (PSD)
 - Kernel matrices (in kernel method) need to be positive semi-definite
 - A is called the square root of M

$M = AA^{\mathsf{T}} \Rightarrow M \text{ is PSD}$

- □ Given M, to show M is positive semi-definite, need to show $\forall x(x^{T}Mx \geq 0)$
- □ For example, $M = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$ is positive semidefinite because

$$(x_1 \quad x_2) \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 - 2x_1x_2 + x_2^2$$
$$= (x_1 - x_2)^2 \ge 0$$

To show that AA^{T} is positive semi-definite, we first establish the equivalence between $x^{T}Mx$ and a quadratic formula

$M = AA^{\mathsf{T}} \Rightarrow M \text{ is PSD}$

- □ A generalized quadratic formula of n variables can be written in the form of x^TMx
- For instance, a quadratic formula of two variables $a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + a_{22}x_2^2$

can be written as

$$(x_1 x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1 a_{11} + x_1 a_{12} x_1 a_{12} + x_2 a_{22}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= a_{11} x_1^2 + a_{12} x_1 x_2 + a_{21} x_2 x_1 + a_{22} x_2^2$$

 \Box The general form of n variables is

$$(x_1 \quad \dots \quad x_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x^{\mathsf{T}} A x = \sum_{ij} a_{ij} x_i x_j$$

$M = AA^{\mathsf{T}} \Rightarrow M \text{ is PSD}$

□ Let $B = AA^{\mathsf{T}}$, then $x^{\mathsf{T}}Bx \geq 0$, let a_i be the irow of A, then

$$x^{\mathsf{T}}(AA^{\mathsf{T}})x = \sum_{ij} \langle a_i, a_j \rangle x_i x_j$$
$$= \sum_{ij} \langle a_i x_i, a_j x_j \rangle$$
$$= \langle \sum_i a_i x_i, \sum_j a_j x_j \rangle \ge 0$$

- This says that $x^{T}(AA^{T})x$ can be factorized into a linear addition of the terms t^{2} for each element t in the vector $\sum_{i} a_{i}x_{i}$
 - Hence AA^{T} is positive semi-definite

PSD. Example of 2×2 matrix

$$A = (\xleftarrow{\leftarrow} a_1 \xrightarrow{\rightarrow}), A^{\top} = \begin{pmatrix} \uparrow & \uparrow \\ a_1^{\top} & a_2^{\top} \\ \downarrow & \downarrow \end{pmatrix}$$

$$AA^{\top} = \begin{pmatrix} a_1 a_1^{\top} & a_1 a_2^{\top} \\ a_2 a_1^{\top} & a_2 a_2^{\top} \end{pmatrix}$$

$$x^{\top} AA^{\top} x = (x_1 \quad x_2) \begin{pmatrix} a_1 a_1^{\top} & a_1 a_2^{\top} \\ a_2 a_1^{\top} & a_2 a_2^{\top} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1 a_1 a_1^{\top} + x_2 a_2 a_1^{\top} \quad x_1 a_1 a_2^{\top} + x_2 a_2 a_2^{\top}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= a_1 a_1^{\top} x_1^2 + 2a_1 a_2^{\top} x_1 x_2 + a_2 a_2^{\top} x_2^2 \quad (\because a_1 a_2^{\top} = a_2 a_1^{\top})$$

$$= (x_1 a_1 + x_2 a_2) (x_1 a_1^{\top} + x_2 a_2^{\top})$$

$$= \|x_1 a_1 + x_2 a_2\|^2$$

$$\geq 0$$

PSD. Example of 2×2 matrix

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$x^{\mathsf{T}}AA^{\mathsf{T}}x = (x_1 \quad x_2) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1 + x_2 \quad x_1 + 2x_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= x_1^2 + x_1x_2 + x_1x_2 + 2x_2^2$$

$$= (x_1^2 + 2x_1x_2 + x_2^2) + x_2^2$$

$$= (x_1 + x_2)^2 + x_2^2$$
By theorem, $\sum_i a_i x_i = x_1 (1 \quad 0) + x_2 (1 \quad 1) = (x_1 + x_2 \quad x_2)$

$$(\sum_i a_i x_i) (\sum_i a_i x_i) = (x_1 + x_2 \quad x_2) \begin{pmatrix} x_1 + x_2 \\ x_2 \end{pmatrix}$$

$$= (x_1 + x_2)^2 + x_2^2$$

 $x^{\mathsf{T}}AA^{\mathsf{T}}x = (x_1 + x_2)^2 + x_2^2 \ge 0$

PSD. Example of 3×2 matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$x^{\mathsf{T}}AA^{\mathsf{T}}x = (x_1 \quad x_2 \quad x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= (x_1 + x_3 \quad x_2 + x_3 \quad x_1 + x_2 + 2x_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= x_1^2 + 2x_1x_3 + x_2^2 + 2x_2x_3 + 2x_3^2$$
By theorem, $\sum_i a_i x_i = x_1 (1 \quad 0) + x_2 (0 \quad 1) + x_3 (1 \quad 1)$

$$= (x_1 + x_3 \quad x_2 + x_3)$$

$$(\sum_i a_i x_i) (\sum_i a_i x_i) = (x_1 + x_3 \quad x_2 + x_3) \begin{pmatrix} x_1 + x_3 \\ x_2 + x_3 \end{pmatrix}$$

$$= x_1^2 + 2x_3^2 + 2x_1x_3 + x_2^2 + 2x_2x_3$$

 $x^{\mathsf{T}}AA^{\mathsf{T}}x = (x_1 + x_3)^2 + (x_2 + x_3)^2 \ge 0$

$AA^{\mathsf{T}}/A^{\mathsf{T}}A$ equal in decomposition

- $\ \square \ AA^{\mathsf{T}}$ and $A^{\mathsf{T}}A$ have equivalent eigendecomposition
- □ We will prove these facts
 - 1. AA^{T} and $A^{\mathsf{T}}A$ have the same rank
 - 2.1 AA^{T} and $A^{T}A$ have the same eigenvalues
 - 2.2 AA^{T} and $A^{\mathsf{T}}A$ eigenvectors related (different for only up to an orthogonal transformation)

AA^{T} and $A^{\mathsf{T}}A$ have the same rank

- \Box Let N(A) denote the null space of A
 - $N(A) = \{x | Ax = 0\}$
- \square For $u \in N(A)$, $Au = 0 \Rightarrow A^{T}Au = 0 \Rightarrow u \in N(A^{T}A)$
- □ For $u \in N(A^{T}A)$, $A^{T}Au = 0 \Rightarrow uA^{T}Au = 0$ solide $\Rightarrow (Au)^{T}(Au) = 0 \stackrel{\text{See}}{\Rightarrow} Au = 0$ $\Rightarrow u \in N(A)$
- $\Box \quad \mathsf{Hence} \ N(A^{\mathsf{T}}A) = N(A) \Rightarrow \mathrm{rank}(A^{\mathsf{T}}A) = \mathrm{rank}(A)$
- □ Similarly $N(AA^{\mathsf{T}}) = N(A^{\mathsf{T}})$ ⇒ $rank(AA^{\mathsf{T}}) = rank(A^{\mathsf{T}})$
- $: \operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{T}}), \operatorname{rank}(A^{\mathsf{T}}A) = \operatorname{rank}(AA^{\mathsf{T}})$

Proof $X^{\mathsf{T}}X = 0 \Rightarrow X = 0$

- \Box Let $X = (x_{ij})$
- □ First note that $X^TX = 0$ is a system of equations where each element of X^TX

$$(X^{\mathsf{T}}X)_{ij} = \sum_{k} x_{ki} x_{kj} = 0$$

□ Since
$$(X^T X)_{ii} = \sum_k x_{ki}^2 = 0$$

⇒ $\forall i \forall k, x_{ki} = 0$

$AA^{\mathsf{T}}/A^{\mathsf{T}}A$ have equal eigenvalues

(Stronger proof than that shown with SVD)

- □ For any matrices A and B, AB and BA have the same non-zero eigenvalues
 - Let $\lambda \neq 0$ be a eigenvalue for AB with eigenvector v

Then
$$ABv = \lambda v \Rightarrow BABv = \lambda Bv$$

 $\Rightarrow (BA)(Bv) = \lambda(Bv)$

 $\Rightarrow \lambda$ is a eigenvalue of BA with eigenvector (Bv)

$AA^{\mathsf{T}}/A^{\mathsf{T}}A$ eigenvectors related

- □ (From previous slide)
 - Let $\lambda \neq 0$ be a eigenvalue for AB with eigenvector v
 - $\Rightarrow \lambda$ is a eigenvalue of BA with eigenvector (Bv)
- □ Let $A = X^{\top}$ and B = X, if v is eigenvector for $X^{\top}X$, Xv is eigenvector for XX^{\top}
 - This is the basis for the equivalence of PCA and cMDS (later)

Convert $AA^{\mathsf{T}} \longleftrightarrow A^{\mathsf{T}}A$

- □ Let Λ be the diagonal matrix of eigenvalues for both AA^{T} and $A^{\mathsf{T}}A$
- \square Let U, V be their respective eigenvectors, that is, $AA^{T}U = \Lambda U$ and $A^{\mathsf{T}}AV = \Lambda V$, then $AA^{\mathsf{T}} = IJ\Lambda IJ^{\mathsf{T}}$ $= U(V^{\mathsf{T}}A^{\mathsf{T}}AV)U^{\mathsf{T}}$ $= (UV^{\top})A^{\top}A(VU^{\top})$